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Introduction

In many countries outside the U.S.A., students are required to do
all their math work on “square-ruled paper”’: paper provided with ruled
squares. It is sometimes called “quadrille paper” (a quadrille long ago
was a square formation in which knights paraded—and, later, a dance
performed in a square formation). :

J
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In countries where such paper is used for calculations, some
teachers seem to believe it helps students by keeping additions and sub-
tractions lined up, without the tens getting into the column meant for the
hundreds, and all that. Actually, of course, one soon finds that there is
much more to math than keeping one’s columns straight—which may be
the reason why some students seem to manage their math problems just
as easily (or with just as much difficulty) on plain paper.

Yet those little squares can do much more than keep columns
straight. They can help make math more interesting and more under-
standable, in many ways. I myself attended school abroad, and I recall
being intrigued and helped by a great number of puzzles, games, and
mathematical “side trips,” all of which used square-ruled paper—or, as it
is more often called in the U.S.A., “graph paper.” This little book is meant
to introduce you to some of them, and I wish you as much fun as I had.




In the chapters that follow you will find a wide variety of subjects
connected in one way or another (sometimes quite loosely, I confess) with
graph paper. All the reader will need beforehand is some basic knowledge
of arithmetic, up to and including operations with fractions, and a rea-
sonably good reading ability.

This book is intended for two rather different groups of readers. On
the one hand, it is meant for advanced students of 7th-to-9th-grade
mathematics—students who find the standard curriculum too limited
and would like some new and more challenging material. Sometimes
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such students are handed material intended for later school years, but

- this merely postpones their problem. Here a different option is offered—

the option of exploring a broader range of subjects, including some areas
rarely discussed in the classroom.

On the other hand, adults seem to enjoy the book as well. Some of

- Iy associates have read it in draft form, and even those among them who

had a background in the technical professions always discovered enter-
taining twists and byways that were not familiar to them. Some adult
readers were attracted by the collection of unusual facts and puzzles, and

many who had moved away from math after leaving school found here
new interest and a fresh viewpoint.

What the book contains is a quick tour showing the mathematical
beginner or amateur what . math really is—not the shuffling of numbers
or the memorizing of formulas, but the development of ideas. You will
read here abojit graphs and formulas, street plans and bridges, furlongs
and barleycorns—and also about Pythagoras and Gauss, and Mark Twain
and Ben Franklin. The aim is to show the many and various forms that a
mathematical idea can have and the many different ways in which math
is related to everyday life and culture. And what you read (and do) may
even increase your appetite—and your ability—to learn more on your
own. .

A few words about the problems and puzzles scattered throughout
the book (signaled by question marks in the margin). The answers are
given in other places (indicated by exclamation marks), but try not to
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peek: work out the solutions by yourself (if you can at all), because this
way you get the satisfaction of discovering things on your own. On the
other hand, you may skip anything that seems too difficult. This is not a
mathematical textbook, and you do not have to master every subject in
order to understand what follows. To get the most out of the book, make
sure you have plenty of graph paper handy, so you can try things out by
yourself while reading.

This is meant to be a fun book—the kind that might be appreciated

on a long trip or a rainy weekend. In writing it, I have tried tq imagine
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that I was telling it to my own children, who seem to have a lot of fun with
math. Technical wording has been avoided as much as possible, and the
mathematics, too, is often simplified. This is all right for a first look at the
subject: if your interest continues, you will probably come back to these
matters, some day, and study them in more detail.

And now, to begin—a puzzle.
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The Prisoner’s Escape

Let us call a “unit” the width of each small square on the ruled
paper (more will be said about that “unit” later on). We now draw a big
square, eight units wide and eight units high, with a small opening at the
top left corner. *

The drawing is the map of a jail: it contains 64 rooms, or ‘“cells”—
€very square is a room—and there exist doors in the walls between
any two neighboring rooms (that is, you can move from one to another
going up, down, left, or right, but not diagonally through a corner). In
addition there is just the one door leading out of the jail: the opening at
the top left corner. ‘

A prisoner sitting in the bottom right corner cell (marked by a dot)
is told that he may leave the jail and go free if on his way out he visits
every other cell once and no more than once (his own cell he may enter as
many times as he wishes). He may open any door to accomplish his pur-
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"i,‘ose, but at the end of his trip he must arrive at the prison’s exit, where
he would be allowed to continue out to his freedom.

How does he move? ‘
, Before you continue, get hold of a sheet of square-ruled paper (or
draw your own rulings) and try to trace the corréct route.

- If you have solved the problem, congratulations! Either you are
unusually sharp—or you have seen it before.

If you haven’t succeeded, you probably found that one cell was -
always left over, as shown below: :

N LM LM
T
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To see why this happens, let us shade the cells in checkerboard
fashion and note the color of each cell visited by the prisoner: '
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The first cell (his own) is white.
The second one is black.

The 3rd one is white.

The 4th one is black.




And so on and so forth: the color always changes, for from a white
cell the prisoner can only enter black cells, and from 2 black cell only
white ones. - '

Therefore, no matter how he moves, all even-numbered cells are
black, all odd-numbered ones are white.

If the prisoner is to end his trip next to the exit gate, the last cell he

S0, somewhere behind him will be left one unvisited black cell.

Yet there is a way, though it Tequires a certain trick. The solution is
given on page 8, but before you look it up, read the problem again—care-
fully—and see if you can discover the trick yourself,




- Rectangles

We now turn to something simpler—to some of the shapes that can
be drawn with the help of square ruling on paper.

Simplest among such shapes are rectangles, and it is easier to
draw one than to desgribe it: :

Rectangles come inall sizes, big and small. One way of measuring
the size of a rectangle is by counting.the number of squares it contains:
we call this the area of the rectangle, and there is a simple rule for
finding it quickly without counting. For example, the rectangle drawn
here is 6 units wide and 4 units high: the rule says that we get the area if
we multiply the width by the'height; so the area must be

6 X 4 = 24 squares.

By the way, whenever areas are measured, one should always state .
the size of the “unit” in which distances are measured. Here the ‘“unit” is
the distance between two neighboring lines of the ruling (its relation to
other units of length will be described in chapter 14). If, on the other
hand, the unit of distance were chosen to be one inch, all areas would be

(13 bhl

~Ixror in Y‘cAtinve inm~thacs




S

00

It is easy to see why the size of the length unit is important. Sup-
pose we had a square ruling with a unit five times smaller than the one
used so far. Then a rectangle of the same size as the one drawn earlier

+HH

this book, the same “unit” will be used eve
will not worry any more about it. , .

In mathematical language, the result of multiplying two numbers
together is called their product. So the rule for finding the area of rect-
angles can be simply stated this way:

4

The area of arectangle is the product
of its width and its height. -

Solution

The prisoner’s escape:

The prisoner may visit his own cell more than once. Until now this
fact has not been used: let’s see whether it provides any help. ,

Suppose that the Prisoner’s first visit is by the “top door” to the cell
Just above his own (in the dravving)_ and suppose that he does wish to
revisit his own cell. He must do so at once: if he does not, then he either
has to enter once more the cell above his own, and this is forbidden, since

he can visit it only once; or he can enter his own cell by the other door, on

left, his escape becomes quite easy. The reason is simple: the prisoner
now makes a total of 65 visits (including two to hig own cell) and the last
cell can be white as required, since 65 ig an odd number.

Try it and see! -
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Can any number be a product? For instance, is 79 the product of
any two whole numbers? Or—in other words—car one draw a rectangle
with an area of 79 without cutting through any squares? A

The answer depends on the rules we follow. It is certainly correct to
write

79 x 1 = 79,

and therefore a rectangle of area 79 can be drawn, provided it is a long
strip one unit wide and 79 units long. However, such products involving
multiplication by 1 can be written for any number; so let us not count
them.

It then turns out that 79 is the product of no two whole numbers.
Numbers with this property are called prime numbers or, for short,
primes. The number 79 is a prime, but its nearest neighbors are not:

78:=6X 13.
80 = 8 x 10.

Prime numbers are scattered among whole numbers like raisins in
a pudding: they become somewhat more rare as one goes to bigger num-
bers, but they never end. The numbers 2, 3, 5, 7, 11, and 13 are prime;
and some more prime numbers, following these, are given in a list on
page 11. Before looking at it, you are invited to make up your own list and
then compare!




Let us examine the squares whose side e
units—and, in particular, find their areas:

A square 1 unit wide has an area 1x1= 1.

qua_}s a whole number of

2 units wide 2 X 2= 4,
3 units wide 3x3= 9
4 units wide 4-x 4 = 16.
5 units wide 5% 5= 95,
4 9 16 25

The next numbers on the list of areas would be

386, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324;

and, of course, the list can be continued without limit.
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This rather interesting group of numbers has a name: they are
called square numbers or simply squares. Squares are always formed by
multiplying a number by itself, and we speak of “the square of a number”
meaning the product of a number with itself. For instance, saying “25 is
the square of 5” means that

5x 5= 25.

There is a short way to indicate that a number is multiislied by itself
one or more times, or that a number is a product of two or more equal
numbers. For example, we often write

52 instead of 5 X 5.
In other words 5?2 is the product of 2 fives. It is sometimes called “five to
the second power”; but usually we call it “the square of five” or “five
squared.” One also writes

53 instead of 5 X 5 X 5,

which is called “five to the third power” or simply “five to the third,” or
sometimes “five cubed.” In the same manner, -

2 means2 X 2 X 2 X 2

and is called “two to the fourth power” or “two to the fourth.” Some other
powers written in this fashion include these: :

% = 4. P = 0
2 = 8. B = 27
2¢ = 16. 3t = 81.
2% = 32. 35 = 243.

Solution

The primes following 13 and smaller than 200:

17 19 93 29 31 37 41 43 47 53

= 61 67 71 73 79 8 8 97 101
03 107 109 113 127 131 137 139 149 151
157 163 167 173 179 181 191 193 197 ‘

d
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The largest prime number known at the time I'm writing equals
— 1. Written in the usual form, this number would be 13,395 digits
long. Of course, the numbers that form the foundation of our everyday
system for naming and writing down numbers—ten, hundred, thousand,
ten thousand (“myriad” in the Bible), and so on through the million and
the billion—are all powers of ten. However, we’d better stop here, since
this is already pretty far from the subject of squares!

244497
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- Formulas

Notice that the squares of numbers grow faster than the numbers
themselves: J

Number: 1 2 3 4 5 6 7 8 -9 10
Its square: 1 4 9 16 25 36 49 64 81 100

While the numbers in the top row grow at a steady rate, getting
larger by 1 at each step, their squares (in the lower row) increase at a rate
that speeds up all the time: the first two squares in our list differ only by
3, but the last two differ by 19! Another sign showing that the squares of
numbers grow faster than the numbers themselves is the fact that when
a number doubles, its square increases not twice but four times: 6 is
twice as large as 3, but 6 = 36 is four times larger than 3* = 9.

Many things are known to grow in this fashion. For instance, if a
car accelerates to twice its speed, it becomes four times harder to stop it.
Let’s take a closer look at what exactly this means.

- Suppose you are driving a car on a level dry road at 40 miles per
hour—that is, a speed which brings you 40 miles farther down the road
for each hour of driving—and suddenly you have to stop. You step on the
brake—but of course the car does not stop immediately: some time is
needed before it slows down and comes to a complete stop. How far will
the car continue moving after you apply the brakes?

The exact answer of course depends on many things—on the car, its
tires, the condition of the road, and so on. However, a fairly accurate

13
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answer can be found by the following rule. Take the number of tens of
miles in your speed (here it is 4), form its square, and multiply everything
by 5: the result is the “braking distance” in feet.

In the particular case of a car moving at 40 miles per hour, this
means ' ' :

42 x 5=16 x 5 = 80 feet.

If instead you were driving at 80 miles per hour, the distance would
be

8 X 5 =64 x 5= 320 feet.

This is quite far: although the car is only moving twice as fast as before, it
now goes four times farther before stopping. Obviously, driving twice as
-fast is more than twice as dangerous!

Mathematicians have a special way of writing down rules of this
sort, by means of formulas. In a formula, any number which is not
known beforehand is marked by a letter. For instance, the rule for the .-
area of a rectangle can be written as a formula thus: ‘ '

] A=WXxH,
where W is the number giving the width,
H is the number giving the height, and
A is the number giving the area.

If you are told that in a particular case W equals 6 and H equals 4, you can
replace the letters in the formula by these numbers and the formula then
gives the correct number for A, namely

A=6x4=24

The rule for the “braking distance” of a car can also be written as a
formula, namely

D =N2 x5,

where N stands for the number of tens of miles-per-hour on the car’s
speedometer and D is the braking distance in feet.

To use the formula, suppose the car travels at 50 miles per hour.
Then N = 5, and by putting the number 5 in place of N in the formula we
get the distance D as ‘

D=5 x 5= 125 feet.
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" As the speed gets higher, the braking distance grows at an increas-

" ing rate, as can be seen from the table below:

Speed.in : .
Miles per Hour D in feet
" 10 . 5
20 ' 20
30 45
40 80
50 : 125
60 . ' 180
‘70 ... 245
80 . nh i m o owx 320 0%

As mentioned before, this formula’is not cémplet'é_ly 'aééi;iate': the
exact braking distance. depends on the roughness of the road, the condi-

" tion of the car’s tires and brakes, and other things. Also, it only applies to
level dry roads: on a wet (or icy) road, or on one that slopes downward,

stopping a car is ‘much harder. On the other hand, the formula will also
work if N is not a whole number—for 95 miles per hour, for instance,
N = 2% and N2 = 6%4. ‘ : : '
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IVVe turn to one ore formula usmg squares. .
: No o6ne has yet found a snnple formula that derives prime numbers’

- ,Mathemaﬂcrans have long searched for one, but the only general method
- fo in i xammatlon of- numbers to see.

‘prlme : .
: Perhaps the nearest thmg to such a formula was discovered by the
. :Swiss-born” mathematlc1an Leonhard Euler (pronounced “oﬂer”) about
' 200yearsago Itls St T F e n P

P=M+N+m

If N is replaced by a small Whole number P is always prime. However

the formula clearly does not hold without a limit: if N = 41, the number

Pis completely' ‘made up’’ by adding and multlplymg the- number 41,and
.‘one would therefore suspect that it can be divided by 41 (indeed 1t/can) In
~fact, even for n = 40 the result can be divided by 41; but if N is a whole

number between (and including) .0 ‘and- 39, Pisa prime number. The

formula thus gives 40 prime numbers one after the other—a record for
."formulas as simple-as this one.* =~ . -

- ‘By-the way, the choice of the letter ‘N to represent the unknown
number in the abqve formula is not an accident. For some reason it has
- become customary in formulas to denote whole nuinbers by: the letter N

(capital or small): if several whole numbers are mvolved the letters pre-
.ceding N in the alphabet are also used, all the way down'to I. In a widely

used system for handling formulas by computers—known as the “com-

puter language” FORTRAN, short for FORmula TRANslatlon——When-

1A
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ever a quantity is denoted by a letter from I to N (or by a group of letters

beginning with a lettér between I and N) the computer automatically
assumes (unless it is instructed otherwise) that the quantity is a whole

numbers which may or may not be whole are usually denoted in formulas

the letter X —
:lys : fse?i er and if several such numbers are involved, Y and Z are

number; in other cases, it will provide a suitable decimal point. Unknown
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Iirational Numbers

>

It is poss1ble to draw squares with areas that are not included in the

- list of square numbers ‘but the length of their side will not in general be.a

Whole numbelr of umts

L1

For instance, the sq_uare_

has an area of 2. (The reason for this is eXplaJned on page 20 Can you~

guess’it?). Its area is a whole number of squares—tvvo—but the length of

its side is someWhere between one ‘and two umts In fact, the s1de turns
out to be just a bit less ‘than 1% units long :

' The exact number giving the length of the side is called “the square

root of two,” which is’ a_nother way of saying “the number the square of

Wthh equals two.” There isa speCJal symbol for WntJng it, narnely

}
Obvmusly, other numbers ‘will also have square TOOtS. If a number

. belongs to the list of square numbers its square root Wlll be a whole
number the square root of 9 for mstance 1s 3:

\/‘=3‘.

However, V3, \/5, V6, V7 and most other square roots—including
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' V/2—are not so simply eic'pressed. They belong to an interesting (and very

latge) group of numbers called irrational numbers, which literally
means “numbers that do not make sense.” Their story is as follows.

Some 2500 years ago there lived a Greek mathematician named .

Pythagoras. He seems to be one of the first mathematicians whose names
are known to us, and he lived at a time when very little was known about
numbers and science. :

. Numbers, especially whole numbers, fascinated Pythagoras. He
discovered interesting rules concerning them, as well as a famous for-
mula about triangles which stll bears his name. He felt that there was
something particularly beautiful about whole numbers and that they held

~ the key to understanding nature.

Now obviously not every number is whole—there also exist frac-
tions and numbers with a whole and a fractional part, such as 1%. Still,

Pythagoras believed that if a number is not whole, it can always be given .

by two whole numbers, one divided by the other. For instance, 1% is 3

divided by 2, or % for short (also written 3/2). This is nowadays called the

“ratio” between 3.and 2—literally, “the sensible way” of combining 3 and
2 into a single number. (The word ratio comes from Latin, the language
of the ancient Romans, which has contributed many other words to En-
glish. The Pythagoreans spoke Greek and used a different name, based on
the Greek word logosi from which the English “logic” is derived. How-
ever, their word meant the same as “ratio”—it was to them, you might
say, “the logical way” of combining two numbers.) ,

) Any whole number and any number containing a fractional part
(“mixed number”) can be written as a ratio. Furthermore, if you happen

to be familiar with decimal fractions, you will realize that whenever such-

- a fraction (or indeed any number which contains the decimal point)

comes to an end on the right hand side of the decimal point, it too can be
represented as a ratio. All such niumbers are called rational numbers: for
example, 3/2, 22/7, 355/113, 2.54 =.254/100, and 137 = 137/1 are all ra-
tional. ’ :

Pythagoras had students and friends to whom he taught his ideas
and discoveries. Together they formed the “Pythagorean Brother-
hood”—a society devoted to the study of numbers and of nature. For a
while the society grew, in spite of some very strange beliefs held by its
members. Then one day a member of the society made an- unexpected
discovery: contrary to what he had been taught, not all numbers could be
expressed as the ratio of two whole numbers. In particular, the number
V2 could not: one can find fractions that come as close to it as we please,
but no fraction exists which gives V2 exactly. . )

The Pythagoreans called such numbers (in Greek) alogos which in
English translates into “illogical” (numbers), and we now use a similar

‘name of Latin (Roman) origin—“irrational numbers,” meaning either

numbers which cannot be expressed as a ratio or, if you wish, numbers
which do not make sense. At one time they were called “surds” in En-
glish, not on account of their “absurd” nature (though that, too, could be
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claimed) but from the Latin surdus, meaning deaf. What happened was a
slight error in translation: alogos also means “without a word” and this
caused an Arab mathematician, about 1000 years ago, to translate it as
“deaf”; later, upon further translation from Arabic into Latin, the lan—
guage of scholars in the middle ages, this emerged as surdus!

It is told that members of the brotherhood were deeply upset by the
discovery (one legend claims that they killed the discoverer in an attempt
to keep the matter secret), and it led them to question the.rest of their
beliefs: the society broke up soon afterwards. Nowadays we know not
only -that irrational numbers do exist but also that in a-way there are
actually many more of such numbers than there aré of the “ordinary” (or
“rational”) numbers of the kind that can be written as fractions. To show -
this, however, would be too complicated for this book. : -

The. proof showing why the side of a square W1th area 2 is irrational
is somewhat harder than the other discussions in this book and is there-
fore given in a separate section at the end. ‘

: The lmes of the ru]mg d1v1de the square into 4 tnangles each

: equal’ to half of a ruled ‘square. By puttmg the tnangles together
ina d]fferent way, two such squares can be constructed and thlS
therefore is also the area of the larger square '

3
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Squares ca.n be cut into parts in many different Ways For mstance
one can lelde a square into: 4 equal parts like thlS

e}

-~_(If thlsgseems too hard a hlnt is glven
at the end of the hst of problems ) -

no two»pleces ‘when fitted into the .
square, together form a rectangle?
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-and severalishort sides of lencth 1 magjne
now that the big squareis a box into which the
4 pieces must be fitted. The bottom of the box:

22

(3) Show that it is newver possible to cut the
square into 4 pieces each of which is
shaped like this:

(4) Take away one cornér of the big square, leaving the shape drawn
below:

Can you divide this shape into 4 equal pieces, each of
which has the same appearance as the big shape?

ta

Hint for solvmg the first problem
Each of the pieces has a long side of length- 3

is 4 units long. Suppose first- that no piece touches it Wlth its long side.

;/There is then only one way left for coverlng the bottom: by having every
one of the 4 pieces touch it Wlth ore of its short sides. But sucha solutlon_

could never Work smce no p1ece Would then be long enough to reach the
fop! -

ThlS 1eaves only one p0331bﬂ1ty one plece must touch the bottom
with its long side— : . -

like this: =——p—————— orlike this:

Fitting the remaining ‘pieces is now quite easy. Two solutions are pos-
51b1e—depend1ng on which of the above two positions you have started -
from—and you can’ get each of them from the other one by “flipping it
over” (try looking at it against the light from the reverse side of the

.. paper!). -
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Triangles

A trlangle is a shape formed byfth,i"é.e;straigh’t ]lnesmeetmg a_,t’fh}f??
- corners, as shown here: : . , L

AR A

_._,\
i

therefore simply means a shape with three gles. - -

" A corner between. two straight lines 1scalledanangle, and “triangle”

irted -

and so afe any two edges of this page which meet at a corner.

In particular, each of the four corners of*asquareforms what is

called a right angle, and rectangles are so named because all their angles
are of this kind. A triangle may have a right angle, but never more than

one. Are there any right angles in the triangles drawn above? .

Two lines that meet at a right angle are s4id to be perpendicular to

each other. These two lines are perpendicular
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Solutions

Dividing Up Squares:

Problem 1

Y,
O

Problem 2:

If pieces were .

- allowed to form .
rectangles, this
would be another —
““ solution:”

o0

s ) , fori . the one in the b __left corner.
So‘ e piece must cover i a_nd thls cah o ybe done in on of th two Ways
“shown belo

o/

marked w1th a dot so'a so] ﬁon 1s 1mp0531ble‘
Problem4: - '
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We now draw a line perpendicular to the bottom beginning at the oppo-
e’ comer—hke the broken line in the drawing shown here:

This is called an altltude (or height) of the tnangle Note that we
ay an altitude, not the altitude: by turning the same triangle around,
ach of the other two sides may be made the bottom, and a different al—

herefore has a total of three altitudes. If a triangle leans over so that its
op sticks out to one side, it is still possible to draw an altitude from the

‘top corner; however, it Wﬂl not meet the bottom of the triangle—only the

conunuanon of the bottom as showm in the fodo*mng drawing. .

To sum up, you now know the mea_ning of these t'er'ms‘:'

Triangles o
Angles : ‘ :
/. Right angles '
Lines perpendicular to each other
" The altltudes of a triangle

Y N
e ..

" You are now ready to ﬁnd out somethmg less sunple about tne

tnangle what is'its area?

T6 find the answer, let the triangle again have orte of its 31des asa
flat bottom—or to use the proper mathematical name, as its base. We

Pl




" B.Then, as the drawing shows, the unknown area X ¢f the triangle can be

draw the altitude to this side and enclose the triangle in a rectangle—like

il .

/
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to pull the rectangle apart along the altitude of the triangle: =~ -~

-
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{ : . ?
In each of the pieces, exactly one half belongs to_the triangle; so

the triangle must equal half the rectangle in area.’ .
The height of the rectangle is the same as ‘the altitude of the tri-
angle, the length of the rectangle is the samé as the length of the tri-

The area of the triangle ig half of that, so:

angle’s base: its area therefore equals the product of these two numbers:

: ‘fA;'r'ea of triangle = 1% % length of base x altitude. A

~

It is interesting to riote thatone getsthe same result no matter

which -of the three sides of the triangle is uséd as base. Of course, the

altitude is usually different for each choice of base. ‘
© .Our résult is.also correct for a triangle which leans over so.that its

altitude, only nieets the continuation of its base. Let ‘the length®of the

altitude be:denoted by the letter A and the'l-en'g‘th of the base by the letter

N
L

The tnangle has half the area of the rectangle. To see why, ivtm‘is best
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* All the triangles here have the same altitude A, and therefore
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“obtained by subtracting the ares of a triangle with base C from the area of
~ a larger triangle with base B+ C): :

X = Ak @e0) Y waave
= “2XAXB + BxAxcC - Y% xAXC

In the last equality we have _dr(_)pped

“axAxC - 1{2><’Aj><_c

since a number minus itself always amounts te zero. What remains is the
same result which was derived earlier for “‘ordinary” triangles.
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Triangular Numbers

Small children then ‘S?;at:k playblocks in tﬂengle-shebed piles like

Each layer. here has one block less-than the one below it. Food
stores also sometimes stack boxes or cans in such piles. When dranng a
pile like this on squa_re—ruled paper, one must cut through some of the
squares; however it is possible to draw triarigle- shaped ‘piles without
cutting through squares if we shift the blocks so that one s1de of the pileis
stralght or lf we draW bnck—shaped blocks :

i
“The number of “blocks” in any of the precedhig drewmgs is

1+2+3+4=10.




like

>od

ga:

the’
ut
2is

1t is the fourth in the series of “triangular numbers” (“triangular” means

“related to triangles”) which give the number of blocks in triangle-

shaped piles. The first five such numbers are:

1 3 8 10 | 15

Triangular numbers by the way, were discovered by .the Pytha-
goreans. They considered the arrangement of 10 blocks or pebbles in a
triangle and the number 10 associated with it as particularly important,
and called it the “holy tetractys” (tetra is “four” in the Greek language,
and 10 is the 4th triangular number).

While there is a short way of writing down square; numbers, none is

“available for triangular numbers. Let us therefore invent one: let a tri-

angular number be marked by a triangle, with a number at the bottom
right corner giving its place in the series of such numbers. For instance,

A,

is the 4th tnangular number, representing a pile with 4 blocks in the
bottom row. We will call it, for short, “triangle- four.” Since the pile repre-
senting this number contaJns 10 blocks we may Wnte

and you may read this, if you wish, as “triangle-four equals ten.”
The first two triangular numbers are

A;=1 and A,=3.

Solution




"To get the next triangle we add a row of 3 blocks below the pile we

already have

g

To find ‘A4-,2eriadd a row of 4 blocks below the existing ‘Pilé :
1 S .
Candget e

Th.lS process can be contmued asvmany t].mes as one VV.lSheS The.
rule 1t gives should by now be clear: any triangular number can be found

by adding the. small number with’ ‘which it is. marked (its index,” as such
-numbers are called in mathematlcs) to the tnangular number commg
before it For instance, LT TN - S T :

<
N
< : |
and so on - -
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~ This is a rather slow method: to reach A, one must carry out 8
itions. Is there a faster way? Yes indeed, as will now bé shown. - ~

For example, let’s find A,. We begin by drawing a pile of Ag Squares
of our square-ruled paper, in such a way that the bottom and one side of

the pile are both straight:

Next we add another such pile—but draw it upside down:

.. J
A 2
i
5. 1.
R H Y . - .
I
’ bl C
.

T ‘If‘sz’ie"btiShé{s the two figures together one gets'a rectangle. The

height of this rectangle is the-same as that of one of the triangular piles—
thatis, 6 umts TheW1dth of thé rectangle is one-unit moré than the width
- of'a pile—n the present case, this means 7 units: R
- The number of squares cortained in the réctangle is therefore
6 x 7 =42,
and this is equal fo the number of ~s~quéres in two ’.‘equal plles
o ' Ae + Ay = 42. e e

To get A; we must take half this number—that is, we divide'by 2:

4 4 a
CE? Ao = F =21,

“This agrees with the result found earlier by simple addition. The
same rule works for other numbers, too. To find A;, multiply 7 by the
number following it—which: is 8—and then divide the result by 2:

9 P} B}

A, =;_.7><(’7+1)=7><8 56:28.



It makes no difference here if one first divides one of the numbers
and only afterwards performs the multiplication. For instance, one could
first divide 8 by 2 to get 4, then multiply by 7 to get 28: thisis actually a -
simpler way, since one then. deals with smaller numbers.-

Next comes

_8Xx(8+1)_8x S_T72_
Ag S 5 5 = 36,

or, if you prefer to divide first and multiply last,

A, =8 ;8+?)= gx 9=4x9-= 36
You may test A, yourself, if you wish.
All this can be written neatly in a Sformula:

_ N xX(N+1)

Ay

' To use the formula, one replaces N with the appropriate number
and calculates the result, ~~ .~ T - ¢ e SRR

. There'is"a story related to_this formula, concerning a boy named
~-Carl Friedrich (German for Charles Frederick) Gauss. He was born in
‘Germany, to a poor bricklayer, in the year 1777—one vear after the U.S.

o ~Declaration of Independence was signed. '

- TFrom his early childhood Gauss was interested in numbers—in
later years he used to say that he could count before he could talk. Once
~when he was three years old he was present when his father was-calculat-
Ing the payment to a group of workers in which he served as foreman. To
everyone’s surprise, little Carl told his father that there was a mistake in

his sum—and when the calculation was checked this was indeed found to
be the case. S o
' - When Gauss was ten years old his class was taught by a man who
apparently did mot believe in spending much of his tirne teaching. He
‘gave the children a long exercise in addition—adding together the first
100 whole numbers: '

\ s

< 1424344+ ...499+100.

The teacher figured that this would keep the children busy for the

" hour, adding up number after number on the little chalkboards used in

schools in those days. He himself, of course, knew by the formula‘that the
answer was.. ’ ' : :

?

=50 x 101 = 5050.

00 x
Avso - 1 >2<101
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‘However, no sooner had the teacher completed giving the problem
when Gauss wrote one number down on his board, slapped it down, and
announced that he had finished. o

Indeed, when finally all the children handed in their work, Gauss

was the only one with the right answer. Later he explained how he did it.

Hearranged the numbers in pairs, working from both ends of the list:

abers
could

_and so on. The hundred numbers fo
101, so the answer had to be

1 4+ 100 = 101
) 2+ 99 =101
3+ 98 =101

rmed 50 pairs each of which equaled

50 x 101 = 5050.

The teacher was sufficiently impressed to buy Gauss an advanced
textbook on mathematics. Gauss later became a famous mathematician 3
and scientist: he carried out ‘the'ﬁrs‘t‘eXac’t’méasJurements of the earth’s
magnetic attraction (a basic unit in magnetism is called the “gauss” in
his honor), investigated the laws of probability, and derived many impor-
tant results in mathernatics. : E



The Sum of | Squar es i |

at is, the formula

not read the preceding discussion but just saw the

me'y 1f ufeltsomeWhat SUSPICIOLIS about
of quality sign, you might have said,

" stanids a s numbe: tself must also be a whole
- ‘number. But on the fight side there is a whole number divided by two,
and you know well that such division often gives a number with a frac-

~ tional part, not a whole number. Isi’t it possible this could happen here?
_ Thereisa very good reason why it never happens. If division by 2 is
to give a Tesult with a fraction, the number being divided must be odd.
‘However, N x (N+1) can never be odd: we get it by Tultiplying a
number by the number following it, and of two such numbers, one is sure
to be'even (two odd nuriibers never follow each other!). So either N or

- N1 can be divided by two, and the samé is true for their prodtict: the

formula therefore never gives a fraction. There also exists a formula for
~ the sum of squares: . . e ‘

144494, +N =N XNHD _XG-[(Q*X. N+ 1],
You could try it for a féwﬂniimbéfé"'(iﬁcludiﬁg N = i)l‘éﬁa.\c.heck it
out, but the same doubt that was described before may still remain: how
- can one be sure that the number on top of the fraction-on the right can
always be evenly divided by 6? ‘ ;

L
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1 to be divisible by 6, it must be divisible by both zand E

For a numbe
roduct of three numbers (the result of multiplyving

- 3. Furthermore, if the produc _'
them together) is to be divisible exactly by 2 and by 3, then at least one of

the numbers must be divisible by 2 and at least one (the same number or

| 4 different one) by 3. That much you probably know from your experience
- with numbers, although the exact mathematical proof is not so easy.

There is no difficulty in showing that the product

N x (N+1) x [(2 x N) + 1]

can always be divided by 2, since we have just seen that one o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>