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4.  Celestial Mechanics 
 
4.1 Kepler’s Laws 
 
  Given a two-body problem--the Earth around the Sun, or a satellite around the Earth, with other factors 
neglected--one can easily show that the satellite moves around the source of attraction (or more accurately, 
around the center of mass of the two bodies) in an ellipse, with the center at one focus. That is Kepler’s 
first law, published in 1609 and based on naked-eye observations of Mars by Tycho de Brahe.  The second 
law  (“law of areas”) describes the way the motion of a satellite or a planet accelerates as it approaches the 
center of attraction: the “radius vector” connecting it to the center sweeps equal areas in equal times.  The 
third law (1619) states that the square of the orbital period is proportional to the cube of the mean distance.  
 
   The laws themselves are derived relatively easily (below), but the full solution of the orbital motion is a 
bit more involved. 
   
4.1.1   The first and second law 
 
  Let m1  be the mass of the Earth and m2 of the satellite (or of Sun and Earth, respectively), and let (r1, r2) 
be their positions in some arbitrary system of coordinates.  The attraction between the two will be along the 
vector r  =  
r2 − r1  from the center of the Earth to the satellite, always directed towards the other body.  From Newton’s 
law 
 

    m1 
d2r1

dt2       +  
Gm1m2

r3   (r2 − r1)      = 0 

          (8)  

    m2 
d2r2

dt2       +  
Gm1m2

r3   (r1 − r2)      = 0 

where G is the constant of gravitation. Cancel m1 in the first equation, m2 in the second, and subtract. If we 
then define  
 
     µ  =  G(m1 + m2)  ≅ G m1  
 then  

     
d2r
dt2       +   

µ
r3     r  = 0      (9) 

 
The cross-product with r gives the conservation of angular momentum 
 

      
d2r
dt2     × r  =  0  =  (d2r

dt2     × r)  +  (dr
dt     × 

dr
dt    )  =  

d
dt (

dr
dt ∞ r)     (10) 

hence 

    h  =  r × 
dr
dt     =  const.    (11) 

 
This is really the law of areas, since h = ⎢h⎥ is the area swept by the radius vector per unit time.  The fact 
the vector h is conserved shows that the motion stays in the same plane, normal to h.  
 
  The value of µ is readily derived by noting that at the surface of the Earth, r - RE, the acceleration due to 
gravity is g. Then 
 

    
G m1

RE
2       =   g   =  

µ
RE

2        (12) 
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Cross-multiply (2) by h  
 

   
d2r
dt2     × h    =   − 

µ
r3 (r ∞ h)        =    − 

µ
r3      r × (r × 

dr
dt    )     = 

 

   =   − 
µ
r3     [r (r 

dr
dt    ) −  r2 

dr
dt     ]      =     µ 

d
dt (

r
r )        (13) 

 
Since dh/dt = 0, the left-hand side of (13) is d/dt [dr/dt × h], allowing one to integrate (11) to 
 

     
dr
dt      ×  h   =  

µ
r   (r + re)        (14a) 

 
with e a constant vector.  Create the scalar product with r  
 

   r .  (dr
dt      ×  h)  =  (r × 

dr
dt    ) . h  =  h2  =  µr  +  µre cos f  (14b) 

 
with f the angle between e and r.  From this the motion follows an ellipse 
 

      r  =  
p

1 + e cosf        (15) 

 
with “parameter” (or semi-latus rectum) p 
 
      p  =  h2/µ     (16) 
 
The angle f is called the true anomaly of the satellite. Since r is smallest when f=0, the angle f is the one 
between r and the major axis of the ellipse, measured from perigee, the point of closest approach between 
the satellite and the Earth. Let (r1, r2) be the distances of (perigee, apogee), at which cos f = (−1,1).  Then 

    r1  = 
p

1 + e      r2 = 
p

1 − e       (17) 

 
The semi-major axis a is half the sum of the distances to the two foci. Hence 
 

  a   =   
r1 + r2

2        =  
p
2  ( 

1
1 + e  +  

1
1 − e )      =  

p
1 − e2       

 
from which 
      p  =  a(1 − e2)    (18)  
 
4.1.2      Energy 
 
The conservation of energy follows from multiplying (2) with dr/dt = v 
 

   
dr
dt      . 

d2r
dt2        =   − 

µ
r3  ( 

dr
dt . r)     

or 

  
1
2  

d
dt (v

2)      =  − 
µ

2r3  
d
dt (r

2)      =  − 
µ
r2  

dr
dt       =  − 

d
dt  

µ
r        

Hence 

      v2 − 
2µ
r       =  const  =  W  (19) 
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For any compact object of mass m moving in the gravitational field, mW/2 is the total energy.  If that 
object can reach infinity with a finite velocity, its kinetic energy there obviously equalt mW/2, which 
means W is positive.  For a gravitationally bound object, however, W is negative. 
 
4.1.3      Kepler’s Third Law 
 
   The second law states that the areal velocity--the rate at which the radius vector sweeps area--is constant.  
For if v is resolved into orthogonal components in polar coordinates r and θ  (θ = f) 
 

    
dr
dt      =  v  =  r̂      vr  +  θ̂      vθ   (20) 

then 

    h  =  r × v  =  φ̂      r vθ   (21) 

 
and by simple geom etry, h/2  = r vθ/2  is the areal velocity.  In a full period T the total area A of the ellipse 

is swept, hence  

    
1
2      h T   =  A  =  π a b    (22) 

 
where a is the semi-major axis and b the semi-minor one.  
In the drawing, b = AC. Since the sum of distances of any point 
on the ellipse from the two foci (B,B’) is 2a, AB = a. By (18), 
with (15), the perigee distance is 
 

   BD  =  
a(1 − e2)

1 + e       =  a(1-e) 

 
and since CD = a, CB = ae.  Then by Pythagoras 
 
     b  =  AC  =  a(1 − e2)1/2   (23) 
By (16) and (18) 
     h2  = a (1 − e2) µ    (24) 
Squaring (22) and substituting 

     
1
4      a µ (1 − e2)  T2   =  π2 a2 (1 − e2)  

giving finally 
         T2   =  (4π2/µ) a3   (25) 
 
which is Kepler’s 3rd law. Using (2), eq. (25) may be rewritten  
    
         T2  = (4π2 RE /g) (a/RE)3  (26) 
Inserting the constants: 
      Tsec =  5063.48 (a/RE)3/2  (27) 
 
 
4.2 Two-body motion in the orbital plane 
 
As stated, the true anomaly f is the polar angle around the center of attraction, and by (15) and (18) 

     r  =  
a(1 − e2)

1 + e cos f       (28) 

 
The angle f does not vary uniformly, however.  The way it varies is implicit in the law of areas 
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     h  =  r2 
df
dt      = constant  (29) 

 
but isolating it from there is a bit involved. 
 
 
  The calculation below traces the connection between f and the mean anomaly l, an angle increasing like f 
by 2π each orbit but linear in time. The derivation of l traditionally uses an intermediate angle, the 
eccentric anomaly E which also grows by 2π each orbit.  The relation between l  and E involves a 
transcendental equation, named after Kepler, and that between E  and f is not simple, either.   
 
 
4.2.1   The Eccentric Anomaly   
 
  Unlike f,  measured around the focus occupied 
by the center of attraction, the angle E is mea-
sured around the center C of the ellipse, the 
point halfway between the foci, and that is proba-
bly the reason for the name. Let a circle of radius 
a be drawn around C, enclosing the ellipse.  
  Then E is the angle between the major axis of 
the ellipse, also taken as the x-axis,  and the 
radius to B, the projection of the satellite onto the 
circle, i.e. the point there having the same x as 
the satelite. Let: 
 
O be the center of attraction 
 
A  the satellite’s projection on the x-axis  
P  the satellite position B  its projection on the circle, with same x. 
C  the center of the circle (& ellipse)    D  the perigee point 
Then OP = r is the radius vector and 
      AO = x = r cos f   (30a) 
By (28) 
              e AO = er cos f  =  a(1 − e2) − r (30b) 
 
At perigee cos f = 1 and by (28) the radius vector is 
 
      OD = a(1 − e)    (30c) 
 
hence         OC = CD − OD  =  a  −  a(1−e) = ae  (30d) 
 
Also, because the radius of the circle centered at C is a 
 
      AC  = a cos E    (30e) 
 
  eAC  = ea cos E  =  e(CO + AO)  =  e2a  + a(1 − e2)  − r   =  a − r (31) 
giving 
      r  =  a(1 − e cosE)   (32) 
Equating this to 

      r  =  
a(1 − e2)

1 + e cos f       (28) 

allows cos E  to be related to cos f: 
 
    1 − e cos E   =  (1−e2)/(1 + e cos f)   (33) 
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            cos E  =  (e + cos f)/(1 + e cos f)   (34) 
 
A more symmetric form is reached as follows. Eliminating the denominator in (34) 
 
    cos E (1 + e cos f)   =   e + cos f   (35) 
 
Add (1 + e cosf) to both sides 
 
    (1 + cosE )(1 + e cosf )  =   (e + cosf ) + (1 + e cosf )  =  (1 + e)(1 + cosf ) (36a) 
  
Subtract (1 + e cosf)  
 
     (1 - cosE )(1 + e cosf )  =  −(e + cosf ) + (1 + e cosf )  =  (1 − e)(1 − cosf)  (36b)   
Divide: 

    
1 − cosE
1 + cosE       =  

1−e
1+e   

1 − cosf
1 + cosf       (37) 

 
However, for any θ an identity exists 
 

    tan 
θ
2       =   [ 

1 − cosθ
1 + cosθ    ]

1/2
    (38) 

hence
 

    tan 
E
2       =   [ 

1 − e
1 + e    ]1/2

  tan 
f
2       (39) 

 
For a result useful later, instead of dividing eqs. (36) by each other, multiply them: 
 
    sin2E (1 + e cosf )2  =  (1−e2 )sin2f   (40) 
Then using (28)  
    sinE  =  (r/a) (1−e2)−1/2 sinf    (41) 
 
4.2.2      The Mean Anomaly 
 
The dependence of f  on t is given by the law of areas, using (16), (18) and (21): 

     r2 
df
dt      =  h =  [µ a(1−e2)]1/2    (42) 

Now from (39) 
    log tan (E/2)  =  log tan (f/2)  + const  (43) 
 
and an identity exists (useful in integrating 1/sinθ)  
 

     
d

dθ      log tan 
θ
2       =  

1
sinθ       (44) 

 
Thus the time derivative of (43) is 
 

     
df
dt  

1
sinf       =   

dE
dt   

1
sinE          (45) 

With (41) 
 

     
df
dt       =  

dE
dt    

a
r      [1−e2]1/2   (46) 

 
Multiplying by r2, applying (42) and canceling constants 
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     r  
dE
dt        =  [µ

a    ]
1/2

    (47) 

 
We may express r by 
     r  =  a (1 − e cos E )    (32) 
to get 

     
d
dt  (E  − e sinE )      =  [µ

a3    ]1/2  
 (48) 

 
A new constant may now be defined 

           n  =  [µ
a3    ]1/2    

(49) 

and (48) can be integrated to  
     E  − e sin E  = n(t − t0)   (50) 
 
This is Kepler’s equation.  As E  grows from 0 to 2π, the lhs also grows from 0 to 2π, hence it will be 
identified with the mean anomaly 
 
     l  = E  − e sinE    (51) 
If T is the period  
     nT  = 2π     (52) 
and by (49) 
     T2/a3 =  4π2/µ  = const.   (53) 
 
This is Kepler’s 3rd law, derived earlier from the law of areas. 
 

 
4.3 The Position of a Satellite in its orbital Plane 
 
4.3.1     Given the Orbital Elements 
 
   Suppose we know the orbital elements (a,e,l0) at a time t=0, and need to find the position r of the satellite 
and its velocity v in the (ξ,η,ζ) frame. at some other time t.  At that time, the mean anomaly is 
 
       l  =  l0   +  nt    (54) 
and the eccentric anomaly satisfies  
 
              E  − e sinE  = l      (51) 
 
This can be solved numerically for E  (see below). After that f  could be obtained from 

    tan 
E
2       =   [ 

1 − e
1 + e    ]1/2

  tan 
f
2       (39) 

 
but it may be simpler to use 
      r  =  a(1 − e cosE)   (32) 
to derive r.  Then from (28) 

     cos f  =  
1
e      [ 

a(1−e2)
r       −  1 ]   (55) 

 
From this sinf is obtained, its sign depending on whether E is in the range (0,π) or (π,2π), since f  should be 
in that range too.  Then 
 
    ξ  =  r cosf  η  =  r sinf   (56) 
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and of course ζ = 0, since the satellite is always in its own orbital plane. Later, after the other orbital 
elements (i,ω,Ω) are introduced, it will also be possible to relate (ξ,η,ζ) to other coordinate systems, tied to 
the Earth and the Sun. 
 
Kepler’s equation is easily solved by Newton’s method, a general iteration procedure. Suppose a solution 
is needed for a transcendental or high-order equation 
      f(x) = 0    (57a) 
 
and we know that x0 is reasonably close to the solution. By Taylor expansion 
 

    f(x0  + d)  ≈  f(x0)  +  d  
df(x0)

dx         (57b) 

 
Suppose (x0 + d) is a better solution, so that f(x0 +d) is closer to zero. Equating it to zero gives 

     d  =  −  
f(x0)

df(x0)/dx        (57c) 

 
That can be repeated until f(x0+d) is close enough to zero. In Kepler’s equation x is replaced by E and 
    f(E)  =  l  −  E + e sinE   = 0    (58a) 
 

      
df
dE        =  − 1 − e cosE     (58b) 

 
Let E0 be an approximation.  Then E0+d  is a better one if 
 

        d   =   
l − E0 + e sinE0

1 + e cosE0
        (59) 

 
The iteration could well start from E0 = l, but a closer guess is obtained by substituting this in Kepler’s 
equation to get 
 
     E0  =  l  + e sinl    (60) 
 
The iteration converges very rapidly and 3-5 steps give excellent precision. Other methods of solving the 
equations are given by Danby [1988], section 6.6. 
The derivation of v starts with  

 r  =  r cos f ξ̂       +  r sin f η̂        (61) 

Differentiate to get v = 
dr
dt     

 

  v  =  
dr
dt     [cos f ξ̂       +   sin f η̂     ]  + r 

df
dt     [−sin f ξ̂       +  cos f η̂     ]  (62) 

 
Now from the law of areas (29) and the ellipse (15) 
 

     r 
df
dt       =  

h
r      =  [h

p    ] (1 + e cosf)  (63a) 

 
Also, differentiating (15) and substituting (29) 
 

  
dr
dt       =  

p
(1+ecosf)2      e sinf  

df
dt       =  

e sinf
p       r2 

df
dt       =   

eh
p       sin f        (63b) 
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So 

  v  =  
eh
p       sin f [cos f ξ̂       +   sin f η̂     ]  + [h

p    ](1 + e cosf) [−sin f ξ̂       +  cos f η̂     ]   = 

 

 =   [h
p    ]  [ξ̂      sin f [e cos f − (1+e cos f)]  +  η̂      [e sin2f + cos f(1 + e cosf)]] 

or 
 v  =    [h

p    ]  [− sin f ξ̂       +  (e + cos f) η̂     ]       (64) 

 
  Both h and p depend on the orbit, but using (16), one of them can be eliminated, e.g. 
      h/p   =   (µ/p)1/2    (65) 
 
     
4.3.2      Historical side excursion:  Bessel functions 
 
  Bessel functions are named for an astronomer, not a mathematician. Friedrich Bessel lived in Germany in 
the early 1800s and devoted much of his career to accurate measurements of the positions of stars.  His 
great discovery came in 1838, when he showed that during the year the position of one particular star 
shifted back and forth relative to its more distant neighbors, by a tiny amount, because the Earth viewed it 
from slightly different directions.  That provided the first baseline for estimating the distances to the stars. 
 
  In 1824 (following earlier work in 1817) Bessel tried to solve Kepler’s equation by a Fourier series: 

     E  =  l  +  Σk=1

•
     ak sinkl   (66) 

 
In deriving this series for different orbits, the coefficients ak will depend on the eccentricity e, but not on 
the semi-major axis a, because a  has dimensions of length. In an equation for angles, a  cannot appear 
alone, but only in the ratio to another length, and the equations contain no other quantity of that dimension.  
 
  As in the usual derivation of Fourier series, shift l to the left, multiply by sin(nl) and integrate from 0 to π 

       ⌡⌠
0

π

(E − l)     sinnl dl  = Σ ak⌡⌠
0

π

sinkl sinnl dl       =  
π
2      an 

The last equality holds because all right-hand integrals vanish unless k = n.   
The integral on the left can be modified by integration by parts: 

    ⌡⌠
0

π

(E − l)     sinnl dl  = − 
1
n     ⎢(E − l) cosnl⎥

0

π     + 
1
n  ⌡
⌠

0

π

(dE
dl  − 1)     cosnl dl 

At l = 0,π , (E − l ) = 0 and the first term vanishes, also ∫ cosnl dl =  (1/n) sinnl vanishes at the limits. Thus 
if l = l(E) 

      
1
n ⌡⌠

0

π

cosnl dE      =  
π
2     an 

Substituting Kepler’s equation 

  an(e) =  
2
πn  ⌡⌠

0

π

cosn(E − e sinE)dE      =  
2
n     Jn(en)   (67) 

 
That was how Bessel originally defined the Bessel function Jn. The definition looks unconventional, but 
Bessel’s differential equation and series hold. See Special Functions of Mathematical Physics and 
Chemistry  [Sneddon, 1961]. 
   
4.3.3      Given Initial Conditions 
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  Often the orbital elements are not given, and instead one has the initial position r0  (in celestial 
coordinates) at t=0, and the initial velocity v0.   
To derive from this the first three orbital elements a, e, l0 at t=0, the following method (following Battin 
[1968]) can be used. Start from 
 
      h  =  r0 × v0     (11) 
 

      h   =  r0
2  

df0
dt

        (29) 

 

       r0  =  
p

1 + e cosf0
       (15) 

 Also, from (63b) and (16) 

         
dr0

dt       =   
eµ
h      sinf0   (68) 

     
Since 

      v  =  
dr
dt r̂      +  r 

dθ
dt  θ̂        (69) 

the lhs of (68) can be expressed: 
 

     (v0
.r0)  = r0  

dr0

dt       =   
eµr0

h       sinf0  (70) 

Hence 

      eµ sinf0  =  
h
r0

  (v0
.r0)      (71a) 

and also from (15), above 

      eµ cosf0   =  
 h2

r0
       − µ  (71b) 

 
Squaring and adding given the equation for e 
 

    e2 µ2  =   ( h
r0

    )2
 (v0

.r0)2   +  ( h2

r0
       −  µ )2   

(72) 

 
once e is known, a can be derived, using (16) and (18) 
 

     p  =  
h2

µ        =   a (1 − e2)   (18) 

 
 Finally, (32) may be used to obtain cos E0: 
 

     r0  =  a (1 − e cosE0 )  (32) 
 

In the range 0 < E0 < 2π,  cosE0  fits two values of E0 --one in the lower half of the range, one in the upper 
one.  The fact that f0  is in the same half-range as E0  determines which of these is used. Kepler’s equation 
then gives l0   as 
 
      l0   =  E0  −  e sinE0    (51) 
 
4.4    Motion in Three Dimensions 
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4.4.1      Celestial Coordinates 
 
   The basic frame of reference for all orbit calculations should be an inertial frame, one which does not 
rotate like frames associated with the Earth or the position of the Sun.  Such a frame is provided by 
celestial coordinates, tied to the distant universe.  At night the stars (except for the planets) appear to be 
attached to a huge sphere, the “celestial sphere”: in celestial coordinates, the position of each of them on 
that sphere is specified and fixed. 
 
  As the Earth rotates, the celestial sphere appears to revolve with a period close to 24 hours around two 
“celestial poles,” the points straight above the Earth’s own two poles.  Stars close to the celestial poles 
seem to move in circles around them, and the closer the star, the smaller the circle: the “north star” moves 
in a very small circle around the north pole, though it is not exactly at it. 

(Actually, the position of the poles slowly drifts, because the axis of the Earth in space is not fixed 
but rotates (“precesses”) around a cone, with a period of about 26,000 years.  The Greeks already 
knew about this “precession of the equinoxes” but it will be ignored for now; it can be taken into 
account by correction terms in some of the equations.) 

 
  The period with which the celestial sphere (and all stars on it) appears to turn around its axis is about 4 
minutes short of 24 hours: 24 hours is the average time the Sun goes around, but because the Earth orbits 
the Sun, the Sun appears to make one rotation less per year than the stars, making its average period a little 
longer. 
 
  A position on a sphere can be specified by spherical coordinates (θ, φ). On the celestial sphere these are 
known as the declination δ and the right ascension α, respectively; right ascension is often measured in 
hours, minutes and seconds, and is measured from the “first point in Aries” (or “vernal equinox”) defined 
further below. 
 
   The quantities (δ, α) are generally called celestial coordinates, but here this term will also be applied to 
the earth-centered rectangular coordinates (x,y,z) corresponding to spherical (r,δ,α). The celestial z axis 
points to the northern celestial pole, and the celestial x axis (see below) points to the first point in Aries. 
 
4.4.2      The Ecliptic 
 
   The Earth moves around the Sun in a plane (see comment on eq. (11) above), known as the “plane of the 
ecliptic” or simply the ecliptic. From Earth we view that plane edge-on, and it appears to cut the celestial 
sphere into two halves, forming a big circle on it.  The ecliptic is inclined by an angle ε ≈ 23.450 to the 
equatorial plane of the Earth, and that too is the angle at which that circle cuts the celestial equator.   
 
  Seen from Earth, the Sun must always be somewhere on that circle. The ancients identified 12 
constellations of equal size around this circle, called the zodiac, since many are named after animals 
(“zoology” has a similar origin). As the Earth circles the Sun in the course of the year, the Sun appears to 
move around the circle and to spend a month in each constellation of the zodiac: of course, the constellation 
cannot be seen during that month, because the Sun’s brightness blots out its starlight. 
 
  In 3-dimensional space two non-parallel planes cut each other along a straight line, like the two parts of a 
hinge.  The line along which the ecliptic intersects the equatorial plane of the Earth (i.e. the celestial 
equatorial plane) is chosen as the celestial x-axis.   
 
  Two directions are possible on that line, occupied by the Sun (as viewed from Earth) in spring and fall.  
The choice adopted is for the +x direction to point towards the spring position (vernal equinox), the “first 
point in Aries”, so called because long ago it used to be in the constellation of Aries, the lamb. Because of 
the precession of the Earth's axis (see above), it has gradually moved into Pisces (fish), and is now near the 
boundary between Pisces and Aquarius (the water carrier); that is the origin of the song “The dawning of 
the Age of Aquarius” in the musical play “Hair.” 
 
4.4.3      Orbital Elements 
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  The motion of a satellite is best defined in orbital coordinates (ξ,η,ζ) centered on Earth, with the (ξ,η) 
axes in the orbital plane and ξ along the long (major) axis of the orbital ellipse, pointing towards perigee.  
The true anomaly f (eq. (8) above) is thus the polar angle between the “radius vector” r and the ξ axis.  
The ζ axis, perpendicular to the orbital plane, will be assumed to extend into the northern celestial 
hemisphere. 
 
  The orbital elements are six numbers specifying the satellite’s position. Three of them give give its 
position in the orbital plane, and the other three are angles specifying the position of that plane relative to 
the frame of celestial coordinates.  The first three have already been discussed: 
 
(1) The semi-major axis a of the orbital ellipse. 
(2) The eccentricity e  of the orbit. 
(3) The mean anomaly l, an angular measure increasing each orbit (like the true anomaly f) by 3600 (or 2π 

radians), but linear in time.     
The above three give the position along the orbit. In addition, three angles  
(i, ω, Ω) specify the orbital plane itself and the orientation of the orbit inside it.  
 
  We assume that the orbital plane cuts the celestial equator (x, y) along the line of nodes, specified by the 
unit vector N.  The orbit itself cuts the line of nodes in two points, in one it enters the northern 
hemisphere, in the other it enters the southern hemisphere; N is directed towards the former point. The 
angles then are 

  

(4) The inclination i of the orbital plane, i.e. the angle between the ẑ     and ζ̂     . 
 

 
 
 
 
(5)  The argument of perigee ω , the angle between N and the radius vector to perigee, i.e. the ξ axis (see 

drawing on previous page). It is measured in the (ξ,η) plane, the orbital plane. 
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(6) The longitude Ω  of the ascending node, the angle between N and the x axis, i.e. the direction to the 

first point in Aries (see Figure). It is measured in the (x, y) plane, the celestial equator. 
 
 

 
4.4.4      Coordinate Transformations  
  
  To help relate orbital (ξ,η,ζ) to celestial (x,y,z), two auxiliary systems of coordinates can be used, 
denoted here (xn,yn,zn) and (xi,yi,zi). 
 

      Let (x̂    , ŷ    , ẑ    ) and (ξ̂     , η̂     , ζ̂     ) be the respective unit vectors. In the orbital plane, the unit 
vector N along the line of nodes is given by  
 

    N  =  ξ̂      cosω  −  η̂      sinω   (73) 
 

The (xn, yn, zn) coordinates are obtained by rotating (ξ,η,ζ) in the orbital plane so that x̂     → xn̂
      = N.  

Because the rotation is around the ζ axis, zn = ζ, unchanged. We get 
  xn  cosω −sinω 0 ξ   ξ 

  yn =  sinω   cosω 0     . η =   Aω . η (74) 

  zn     0      0 1 ζ   ζ 
Then 
     xn =  ξ cosω  − η sinω   (75) 
 
and applying the gradient operator recovers equation (13).  Alternatively. one can start with unit vectors, 
define rotations and then infer corresponding relations such as (75).  The latter approach was used here to 
derive rotations. 
 
  The next step consists of rotating the (xn,yn) plane by an angle i around the line of nodes, as if that line 

were a hinge, to the celestial equatorial plane. That  produces the (xi,yi,zi) system, with xi
^      = xn̂

      
staying intact, since it lies along the line of nodes.  From unit vectors 
 
 xi     1    0 0        xn   xn 

 yi =     0   cosι −sini     .    yn =   Ai . yn (76) 
 zi     0   sini   cosi        zn   zn 
 
The zi axis is now aligned with the celestial z axis, and only one more rotation is needed to align the other 

two coordinates with (x,y), by the angle Ω which brings xi
^      to the x̂     direction: 

 
 x  cosΩ −sinΩ     0      xn   xi 

 y =  sinΩ   cosΩ     0     .     yn     =   AΩ . yi (77) 

 z     0      0     1      zn   zi 
 
By matrix multiplication 
    x     ξ  ξ 

    y =  AΩ.Ai
.Aω.   η =  A. η   (78) 

    z     ζ  ζ 
where A is given by 
 
 cosω cosΩ−cosi sinω sinΩ      −sinω cosΩ −cosi cosω sinΩ     sini sinΩ 
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 cosω sinΩ+ cosi sinωcosΩ      -sinωsinΩ + cosi cosω cosΩ     -sini cosΩ     (79)   
              sin i sinω     sin i cosω                     cos i 
 
Note that Aω, Ai and AΩ are hermitian, i.e. the transpose matrix obtained by flipping elements around the 

main diagonal gives the inverse transformation. Hence the same property also holds for A. 
 
4.4.5      Deriving the elements (i, ω , Ω) when (r0, v0) are given 
 
As shown in eqn (79), the above three angles give the matrix A transforming orbital coordinates (ξ, η, ζ) to 
celestial ones (x, y, z): 
 
    x   ξ  

    y = A . η    (78) 
    z   ζ 
 
  However, it is also possible to derive A directly from (r0,v0) and use that information to determine the 
values of (i, ω, Ω).  To begin with, r0 and v0  are both in the orbital plane, hence their vector product is 

orthogonal to that plane and by definition gives ζ̂      : 

     ζ̂        =  
r0 ∞ v0

⊆r0 ∞ v0Ÿ
        (80) 

 
Since A is hermitian: 
 
    ξ   x  

    η = AT . y    (81) 
    ζ   z 
it follows that 

   ζ̂        =   A13 x̂      +  A23 ŷ      +  A33 ẑ        (82) 
 

Since the inclination i  is the angle between ζ̂       and ẑ     
 

  ζ̂      . ẑ      =  cosi  =  A33       (83) 
 

which also agrees with (79); since the inclination i is limited to the 
range 0 < i < π, the above defines sini as well. 
 

  In the orbital plane, r0
^       =  r0/r0  and r0

^      × ζ̂      are two 
orthogonal unit vectors, making angles f0  and  π/2−f0  with the ξ-
direction (see drawing). Hence 

               ξ̂         =   r0
^      cos f0   +  (r0

^      × ζ̂     ) sinf0 
 

          =  A11 x̂      +  A21 ŷ      +  A31 ẑ     (84) 
 
Here the functions of f0  are given by (71), the celestial components  of r0  are part of the input and those of 

(r0
^      × ζ̂     ) are easily obtained from (80), giving another column of A. Finally 

 

      η̂       =  (ζ̂      × ξ̂     )   =  r0
^      sin f0   − (r0

^      × ζ̂     ) cosf0                

(85) 
gives the middle column. 
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  When the matrix (79) is equated to A as derived here, we get 9 scalar equations, from which in principle ω 
and Ω  can be derived  (i is already known from (83)). The algebra is greatly simplified, however, if one 
notes that by (78), A is the product of three hermitian matrices 
 
              A  =  AΩ

. Ai
. Aω 

and hence 
          A . AωT  =  AΩ

. Ai    (86) 

Spelled out: 
 
 A11  A12  A13     cosω    sinω    0       cosΩ   −sinΩcosi    sinΩsini 
 A21  A22  A23    −sinω   cosω    0     =     sinΩ     cosΩcosi  −cosΩsini     (87)       
 A31  A32  A33            0         0       1           0              sini         cosi 
 
 
 The factorization gives nine equations: 
 
  A11 cosω − A12sinω = cos Ω    (88-1) 
  A21 cosω − A22sinω = sin Ω    (88-2) 
  A31 cosω − A32sinω = 0     (88-3) 
  A11 sinω + A12cosω = −cosi sinΩ   (88-4) 
  A21 sinω + A22cosω =   cosi cosΩ   (88-5) 
  A31 sinω + A32cosω =   sini    (88-6) 

      A13 = sinΩ sini    (88-7) 
      A23 = cosΩ sini    (88-8) 
      A33 = cos i     (88-9) 

 
 With 9 equations defining 3 unknown angles, extracting those angles seems like an easy task, but 

care is needed, because the equations are not independent.  Furthermore, since either sini or cosi 
can go through zero, it is best to avoid division by those factors. Starting with (88-9) 

 
     cosi = A33    (88-9) 
 Then by (88-3) 
       A32

2 sin2ω = A31
2cos2ω = A31

2(1 − sin2ω)  
 
    sin ω  =  ± A31/(A31

2 + A32
2)1/2  (89a) 

 
  Since we do not yet know the proper sign, we assume temporarily  
 sinω > 0:  
 
    sin ω  = A31/(A31

2 + A32
2)1/2  (89b) 

 Then by (88-3) 
    cos ω  =  A32/(A31

2 + A32
2)1/2  (89c) 

 And by (88-6)  
    A31 sinω + A32cosω =   sini  
 
 The angle i is between 00 and 1800, hence sini > 0.  If then equation  
 (88-6) gives it a negative value, this means the signs of (sinω, cosω) must be reversed.   If sin i = 

0, the situation is degenerate, no line of nodes is defined, and (ω,Ω) are ill-defined too; only their 
sum ω+ Ω has any meaning. 

 
    Suppose the ζ-axis moves through the z-axis, approaching it from one side and then receding on 

the opposite side. The inclination i decreases to zero and ζ and z coincide, but after that it does not 
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cross into negative i as might be naively assumed, but rather, bounces back into the positive range, 
possibly with a discontinuous slope, because the range of i  is 00 to 1800. What does happen 
however is that ω and Ω jump by 1800 as the ascending node and the descending node switch 
sides. The same orbit but clockwise would have inclinations around 1800 

     
 Now equations (88-1) and (88-2) give (cosΩ, sinΩ), completing the set. Nowhere has it been 

necessary to divide by sini or by cosi. 
 
 
 
4.5   Transformations that depend on the Time 
 
4.5.1      Relating (x,y,z) to geographic coordinates. 
 
   The frame of celestial coordinates (x,y,z) is inertial, fixed in space.  The Earth has its own frame of 
reference, its geographic coordinates (xg, yg, zg). Because the Earth rotates, the relation between the two is 
time-dependent, and to express it properly, some system of measuring time must be specified.  The system 
preferred here is that of Julian time.  
 
4.5.2      Julian Time 
 
  Any astronomical calculations that depend on time require some standard system of time measurements. 
Traditionally astronomers use the Julian Day   
or Julian date (JD), with fractions denoting the part of the day that has elapsed. 
 
  There is a problem in matching the fractional part, though, because the commonly used measure for 
fractions of day, universal time (UT) is measured from midnight. (Astronomers also call it "Greenwich 
civil time," while they reckon  "Greenwich Mean Time" or GMT from noon.) 
 
  On the other hand, the Julian day by tradition starts at noon.  Then on any day at UT = 0 the Julian time is 
a half-integral number, ending in .5  
 
  The usual method of calculating Julian time is therefore to use the sum of the Julian time at UT = 0, a 
half-integral number, and add to it the UT, as a fraction of a day. The result will be denoted as the Julian 
Day, since it is measured in days. 
 
Below is the algorithm used by Meeus [1991] to calculate the Julian day JD for epoch J2000.0 at universal 
time UT in year Y, month M, day D (with fractional part).  M should be between 3 to 14, so that if M=1,2, 
a year is changed into months (Y → Y−1, M→M+12).  Then 
 
 A = INT (Y/100)     (= century no,) 
 B = 2 − A + INT(A/4) 
 
Then the Julian Day JD is 
 
 JD  =  INT[365.25 (Y + 4716)] + INT[30.6001(M+1)] + D + B − 1524.5 
 
Note that on (say) 0 UT on April 10, D=10, even though only 9 days have elapsed since the beginning of 
the month: this avoids having a "day zero" in each month, and is all accomodated by the constant added. 
 
The value of JD is in the millions, so actual formulas introduce a measure of  
time given by a smaller number, the epoch time T in Julian centuries 
 

     T  =  
JD − 2451 545.0

36525      (90)  
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4.5.3      The Earth's Rotation 
 
  The amount of rotation which the Earth has undergone at any given UT is given by the angle φg at that 
time, the angle between the celestial x direction and the geographic xg  direction, which is on the 
Greenwich meridian.  For  
UT = 0 on any day (i.e. with JD in (90) a half-integral number), φg in (hrs, min, sec) is given by 
 
φg = 6h 41m 50s.54841 + 8640 184s .812866 T + 0s.093 104 T2 − 0s.000 0062 T3   (91) 
 
 or in degrees 
 
φg =  100.460 618 37  +  36 000.770 053 608  T + 0.000 387 933 T2  - T3/38 710 000 

          (92)  
The nonlinear terms presumably express the slowing down of the Earth's rotation. 
 
 To find φg for any other UT, multiply UT (in degrees,  24 h = 3600) by 1.002 737 909 35  (≈ 1 + 1/365.25) 
and add. Thus φg rotates each day a little over a full circle. Or else, given JD with fractional value, one 
calculates 
 
φg = 280.460 618 37 + 360.985647 366 29 (JD - 2451 545.0)  
      + 0.000 387 933 T2  - T3/38 710 000      (93) 
 
   It is however better to treat UT separately, otherwise accuracy may be lost in (90), where two nearly 
equal numbers are subtracted.  In any case, double-precision calculations are pretty much indicated in all 
such work. 
 



  2-Body 17 

4.5.4      Relating geographic and celestial coordinates 
 
The two are related by a rotation by the angle φg: 

  
   xg  =    x cosφg  +  y sinφg 

   yg  =  −x sinφg  + y cosφg  (94a) 
   zg  =   z 
hence 
   xg    x 

    yg =    A2 . y   (94b) 
    zg    z 
 where 
    cosφg     sinφg 0 
   A2   =        −sinφg     cosφg 0   (94c) 
       0         0  1 
 
 
4.5.5      Ecliptic Coordinates ("celestial" in Meeus) 
 
The first step in deriving the position of the Sun is a rotation to ecliptic 

coordinates (xe,ye,ze), with the xe-axis as before pointing to 
the first point in Aries but the z-axis rotated by an angle  ε ≈ 
23.450  around the x-axis: 

      xe  =  x 
      ye =  y cosε  − z sinε   (95a)  
      ze  =  y sinε  + z cosε 
 hence 
    xe    x 

    ye =    A3 . y   (95b) 
    ze    z 
 with 
    1       0  0 
   A3   = 0   cosε    − sinε   (95c) 
    0   sinε      cosε 
 
4.5.6      The position of the Sun  
 
 Finally, we need the vector pointing at the Sun.   
  If λ is the ecliptic longitude of the Sun (its "celestial 

longitude" in Meeus, p. 87.7), then the unit vector to the Sun is 
 

   r̂    s  =   x̂    e  cosλ  + ŷ    e  sinλ  (96) 
 
Given below are two derivations of λ: that of “low precision formulas for positions of Sun and Moon” of 
the nautical almanac, and the derivation by Meeus [1991] of the “true longitude” Θ which differs from λ by 
some seconds of arc (the book also gives a more accurate derivation of λ). 
 
  The position of the Sun is needed for two purposes, to obtain the approximate direction of the solar wind 
for modeling the magnetosphere, and to derive the Sun’s perturbation of a satellite orbit. Since the direction 
of the solar wind  fluctuates by several degrees and the perturbation term is merely a small correction to the 
equations of motion, low accuracy formulas are quite adequate. 
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Below the notation of the astronomical almanac is retained. The time parameter is 
 

   n = JD - 2 451 545.0     (97) 
 
The mean longitude of the Sun, corrected for aberration, is then 
 
   L  =  280.461 + 0.985 6474 n    (98)  
 
Mean anomaly, in degrees 
    g  =  357.528 + 0.9856003 n    (99) 
 
Ecliptic longitude, in degrees 
 
    λ  =  L  + 1.915 sin g  +  0.020 sin 2g  (100) 
 
Angle between the ecliptic and the equator, in degrees 
 
    ε  =  23.439  − 0.000 0004 n    (101) 
 
Distance R to the Sun, in AU, where 1 AU = 1.49599 1011 m 
 
  R  =  1.000 14 − 0.016 71 cos g − 0.000 14 cos 2g   (102) 

 
 
 In Meeus [1991] on p. 151, the time parameter is T = n/36525, i.e. where n is in Julian days, T is in Julian 
centuries. Then 
 
 L  =  280.46645 + 36000.76983 T +  0.0003032 T2    (103a) 
     
 M  =  357.5290 + 35999.05030 T  − 0.000 1559 T2 − 0.000 000 48 T3   (103b) 

 
and the “true longitude” is 
 
 O.       =  L  + (1.914600 − 0.004 817 T − 0.000 014 T2) sin M 
 
  + (0.019 993 − 0.000 101 T) sin 2M  +  0.000 290 sin 3M  (104) 
 
 
Meeus also gives a formula for ε in degrees, minutes and seconds, to order T3 
Finally  
     R  = 1.000 01018 (1 − e2)/1 + e cosv   (105) 
  
where v is the true anomaly  v  =  M + (O.      − L)  
 
 
4.5.7       Solar ecliptic coordinates  
 
These coordinates, denoted (xs, ys, zs), are defined 
as having zs = ze  but with xs pointing at the Sun 
 
   xs  =    xe cos λ  +  ye sin λ 

   ys  =  −xe sin λ  + ye cos λ  (106a) 
   zs  =   ze 
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   xs    xe 

   ys =    A4 . ye  (106b) 
   zs    ze 
 
4.6      The Earth’s Magnetic Field  
 
  The Earth's magnetic field can be approximated by a magnetic dipole at the Earth's center, inclined by an 
angle θ0 ≈ 11.20 to the Earth's rotation axis, along the meridian φ = φ0 ≈ − 70.750  where φ = 0 is the 
Greenwich meridian. To accurately describe the global field, especially near the Earth's surface, additional 
magnetic field components must be added, usually expressed by the gradient of a scalar magnetic potential, 
expanded in spherical harmonics. For best fit to this corrected magnetic field, the dipole representing the 
field must be slightly shifted from the center of the Earth.  However, all these corrections are relatively 
small at r > 5 RE and are completely negligible for r > 10 RE; since the "Profile" mission is primarily 
concerned with the distant field, they will be neglected. 
 
4.6.1       Dipole Coordinates  
 
    Let (xg,yg,zg) be geographic coordinates--zg along the Earth's axis, xg through the Greenwich 

meridian. The dipole axis passes the magnetic pole at (θd,φd) = (11.20, −70.750).  The northward 
unit vector along that axis is 

      ẑ    d =  ρg
^      sinθ0 + zĝ

      cosθ0   (107a) 
where 

      ρg
^       =  xĝ

      cosφ0  + yĝ
      sinφ0   (107b) 

hence 
 

        ẑ    d =   xĝ
      sinθ0 cosφ0   +  yĝ

      sinθ0 sinφ0   + zĝ
      cosθ0  (107c) 

  
 The xd  axis is in the same plane as zd  and zg, hence yd is normal to that  
plane, and it follows (for a right-hand system) 
 

      ŷ    d   =  
zĝ

  ∞ ẑd

⊆zĝ
  ∞ ẑdŸ

        (108) 

Now 

   zĝ
      × ẑ    d  =    − xĝ

      sinθ0 sinφ0   +  yĝ
      sinθ0 cosφ0  

 
and the magnitude of that vector is sinθ0, hence 
 

     ŷ    d  =    − xĝ
       sinφ0   +  yĝ

      cosφ0    (109) 
Finally 

   x̂    d  =  ŷ    d × ẑ    d  =  xĝ
      cosθ0 cosφ0   +  yĝ

      cosθ0 sinφ0   − zĝ
      sinθ0  (110) 

 

We thus find that the rotation, between either unit vectors or coordinates, involves a matrix A1 satisfying 
 
      xd    xg 
      yd  =    A1  

.  yg    (111) 
      zd    zg 
where 
       cosθ0cosφ0 cosθ0sinφ0       − sinθ0 
    A1     =        − sinφ0      cosφ0  0  (112) 
       sinθ0cosφ0 sinθ0sinφ0           cosθ0 
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A1  is of course hermitian, A1
−1 =  A1

T. 
 
4.6.2      Locating the Magnetic Pole 
 
The dipole field can be expressed by  
 
 B    =    −∇γ0   =   −a ∇[g1

0cosθ  +  g1
1sinθ cosφ  +  h1

1sinθ sinφ] (a/r)2  
 
              =   −∇ (g1

0 zg  +  g1
1 xg  +  h1

1 yg) (a/r)3 
 

              =  −(  g1
0 zĝ

 
       +  g1

1 xĝ
       +  h1

1 yĝ
     )(a/r)3  +  r̂     f(r)   (113) 

 
(no subscript on r, which is the same in all earth-centered systems). 
On the dipole axis B is radial. Neglecting the sign for a moment, 
 

 (g1
0 zĝ

 
       +  g1

1 xĝ
       +  h1

1 yĝ
     )   =  k r̂       

 

    =  k [xĝ
      sinθ0 cosφ0   +  yĝ

      sinθ0 sinφ0   + zĝ
      cosθ0]  (114) 

 
Comparing magnitudes of the two vectors 
 
     k2  =  (g1

0)2  +  (g1
1)2  +  (h1

1)2    (115) 
Equating terms then gives 
      cosθ0 =  g1

0/k 
      sinφ0 =  h1

1/ksinθ0     (116) 
 
and to resolve ambiguity (in case signs need to be inverted) 
 
      cosφ0  =  g1

1/ksinθ0 
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4.7 The Earth's Magnetosphere and its Coordinate System 
 
4.7.1      The Configuration of the Magnetosphere  
 
 Most of the magnetosphere is filled with a nearly collision-free plasma, and its electrodynamic properties 
therefore tend to spread along magnetic field lines. We will thus count as belonging to the magnetosphere 
all points in space linked to Earth by magnetic field lines. Near Earth these lines are "closed," i.e. anchored 
in Earth at both their ends. In addition, some lines connected to the polar caps appear to be "open," i.e. 
temporarily linked to interplanetary field lines, though in practice it is in general not easy to trace where 
that linkage occurs. A third class of field lines are those of the interplanetary magnetic field (IMF) which 
are embedded in the solar wind and travel with it. 
 
  The IMF and the solar wind confine the field lines of the magnetosphere inside a cavity, bullet-shaped in 
front and tending to a cylinder on the night side. The surface separating it from the magnetosphere is 
known as the magnetopause: in observations it is usually marked by a sudden shift of the magnetic field B 
and the plasma density n.  However, the component Bn normal to the magnetopause is generally small and 
in the presence of noise it is not easy to tell when it is small but finite (as expected from open lines) and 
when zero. 
 
  On the dayside, the "subsolar distance" rs of the "nose" of the magnetosphere from the center of Earth is 
typically 10-11 RE, the distance to the boundary abreast of Earth is about 15 RE  and the asymptotic radius 
of the distant tail is about 25-30 RE. These and other parameters defining the magnetosphere can change 
appreciably, depending on the solar wind pressure, the IMF and the preceding history of magnetic activity. 
Sunward of the magnetopause is the collisionless bow shock, typically 2-3 RE beyond the "nose." Outside 
the bow shock is the solar wind, while behind it is the magnetosheath, plasma which has passed through the 
shock, where it has heated up at the expense of its bulk velocity.  That velocity gradually recovers its 
interplanetary value as the plasma flows past the Earth. 
 
  Of the magnetic field lines swept into the tail, most extend beyond the range of regular observations and 
form two oppositely directed bundles, the tail lobes.  Separating the two lobes is a region of very stretched 
but closed field lines known as the plasma sheet, because its plasma density (typically 0.4 ions /cm3) is 
much higher than that of the lobes. Typically the plasma sheet is 2-6 RE  thick and its central surface, the 
locus of minimum ⎢B⎥ on the threading field lines, is known as the neutral sheet. 
 
  Schematic drawings of the magnetosphere often show a dipole axis perpendicular to the direction of the 
solar wind. However, the actual angle between the two varies, because of the inclination ε = 23.450  of the 
Earth axis, combined with the offset angle φ0 = 11.20  between the magnetic dipole and the rotation axis.   
 
  It is customary to express these effects by means of the tilt angle ψ which complements to 900 the angle 
between the dipole axis and the vector pointing into the flow of the solar wind, i.e. ψ = 00  signifies a dipole 
axis perpendicular to the solar wind.  The actual solar value of ψ varies with time between the limits ±(ε + 
φ0) ≈ ±34.650. 
 
  The equatorial surface of the magnetosphere, which includes the neutral sheet, also varies with ψ, as 
described further below. 
 
4.7.2      Geocentric solar magnetospheric coordinates 
 

  Suppose the unit vector zd̂
      along the dipole axis makes an angle 900 − ψ with the unit vector xs

^      
pointing to the Sun, which is also assumed to be the direction from which the solar wind arrives. 
Neglecting all non-dipole components of the Earth's field and any effects of the IMF, only two vectors 

affect the geometry of the magnetosphere, namely xs
^      and  zd̂

     . One therefore expects the plane of those 
two vectors to be a plane of symmetry of the magnetosphere. 
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  If the magnetic dipole were exactly aligned with the Earth's rotation axis, i.e. if θ0  in (98) were zero, that 
plane would rock back and forth around the xs axis in an annual cycle, aligning itself with the (xs,zs) plane 

at the solstices and departing from it the most at the equinoxes. Because φ0 ≠ 0 , the plane of (xs
^     , zd̂

     ) 
undergoes on top of the above variation an additional back-and-forth rocking motion of smaller amplitude 
and with a period of 24 hours. 
  
  The geocentric solar magnetospheric (gsm) system of coordinates (xsm, ysm, zsm) has this plane of 
symmetry as its (xsm, zsm) plane, with xsm along the Earth-to-Sun direction, i.e. xsm = xs. Thus gsm 
coordinates are obtained by rotating the solar ecliptic coordinates by some angle χ around the xs axis: 
    xsm  =  xs 
    ysm =  ys cos χ  − zs sin χ   (117a)  
    zsm  =  ys sin χ  + zs cos χ 
 From this 
    rsm  =  A5 

. rs     (117b) 
 with 
    1       0  0 
         A5   =  0   cos χ    − sin χ   (117c) 
    0   sin χ      cos χ 
 
 To obtain χ it is necessary to retrace transformations from solar ecliptic through ecliptic, celestial and 

geographic, all the way to dipole coordinates, and express in the solar-ecliptic frame the unit vector ẑ    d 
along the dipole axis:    

    ẑ    d  =  a x̂    s +  b ŷ    s  +  c ẑ    s (118a) 
We also know that 

    ẑ    d  =  x̂    smsinψ  +  ẑ    smcosψ (118b) 
 

Since x̂    sm = x̂    s, comparing the above two equations gives 
 
  sinψ = a   (119a) 
 

     ẑ    smcosψ  =  b ẑ    s  +  c ẑ    s (119b) 
 

and since ẑ    sm is a unit vector 
 

 ẑ    sm =  (b2 + c2)−1/2 [ b ẑ    s  +  c ẑ    s]      (120) 
 
 
from which, by (116) 
 

 sinχ  =  
c

(b2+ c2)1/2         cosχ  =  
b

(b2+ c2)1/2          tanχ  = 
b
c      (121) 

 
 
4.7.3      Aberrated GSM coordinates (AGSM) 
 
  For an observer in the Earth's frame, the direction from which the solar wind appears to blow is not that of  
x̂    s, but one that is aberrated by an angle φa ≈ 40 due to the Earth's motion around the Sun. To take that 
effect into account in derivations like the one above, it is necessary to replace the ecliptic coordinates (xs, 
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ys, zs) by aberrated coordinates (xa, ya, za), obtained by rotating the ecliptic coordinates by an angle φa 
around the zs axis: 
 
    xa   cos φa − sin φa      0 xs 

    ya   =   sin φa    cos φa      0        ys  (122) 
    za      0        0       1 zs 
 
This correction was not included in any of the calculations here, since it is small and since the direction 
from which the solar wind arrives at Earth undergoes in addition a random variation of comparable 
magnitude. 
 
4.7.4      Sequence of calculations 
 
Start with eq. (109c) for the unit vector along the dipole axis in geographic  
coordinates. 

    ẑ    d =   xĝ
      sinθ0 cosφ0   +  yĝ

      sinθ0 sinφ0   + zĝ
      cosθ0    (107c) 

 
Let this vector be denoted rg for brevity, since it is in geographic coordinates.   
transforming to celestial coords., by (94)  

              r̂      =  A2
-1  r̂    

g  

 In ecliptic coords., by (95)   

              r̂    e =  A3
 A2

-1  r̂    
g   

  
and reaching solar ecliptic coords, by (96), (118)        

   r̂    s  =  A4 A3
 A2

-1  r̂    
g   =    a x̂    s  +  b ŷ    s + c ẑ    s  (123) 

 
   Then if  PMG  = SQRT(b2  +  c2)  sinψ  = b/PMG      cosψ  = c/PMG 
 
  Next suppose the celestial coordinates of some orbital point R = (x,y,z) are given.  To obtain the GSM 
components Rsm, we need derive 
 
    Rsm  =  (A5  A4  A3) R       (124) 
 
This suggests a need for two further matrices: 
 
    A6 =   A4 A3

 A2
−1    [used in (121) above]  (125a) 

and 
    A7 =  A5  A4  A3               (125b) 
from which 

    rsmc  =  A7  
. r       (125c) 

 
 
 
4.8  Regions of the Magnetosphere 
 
Given all the orbital mechanics and coordinate transformations, it is possible to simulate “Profile” missions 
and in particular, find how effectively their multi-spacecraft constellations sample various regions of the 
magnetosphere.  The position of any given orbit in the magnetosphere is far from static: not only does it 
rotate around the Earth (in GSM coordinates) during the course of a year, but the tilt angle also modifies 
the structure of the field. In addition, of course, changes occur which can’t be predicted, e.g. those due to 
varying solar wind pressure and activity levels. 
 



  2-Body 24 

  Tha Space Situation Center (SSC) which tracks spacecraft orbits for the National Space Science Data 
Center (NSSDC) has a code, written by Mauricio Peredo, classifying any point in space according to the 
magnetospheric region it is most likely to occupy. Its description is found on the world Wide Web at  
 
  http://sscop1.gsfc.nasa.gov/ssc_reg_doc.html 
 
That code is rather lengthy and was therefore not used here, though some of its formulas were retained.  
Instead, a customized code was written, addressing the particular needs of “Profile.”  In its current form, 
that code assigns to the point which is being examined an index IREG from 0 to 9, classifying it as 
belonging to one of the following categories: 
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  IREG  = 0 Inner magnetosphere 
= 1 Near the magnetopause, probably inside it. 
= 2 Near the magnetopause, probably outside it 
= 3 Outside magnetopause, but inside the bow shock 
= 4 Solar wind, outside the bow shock 
 
= 5 Tail lobe 
= 6 Probably in the plasma sheet 
= 7 Near center of plasma sheet. 
= 8  Transition between inner magnetosphere and plasma sheet. 
= 9  cusp or polar region on the day side 

 
The preceding drawing sketches out these regions in the zsm plane. It must be stressed here that the 
classifications merely state high likelihood of the point belonging to a region, for average solar wind 
conditions.  The code which classifies points contains three algorithms, similar to those used in the SSC 
code: 

(1) An analytical approximation to the shape of the magnetopause, due to Sibeck et al. (JGR 96, 5489, 
1991) 

(2) An analytical approximation to the shape of the bow shock, based on one by Fairfield (JGR 76, 
6700, 1971). 

(3) An analytical approximation to the shape of the equatorial surface, based on one by Tsyganenko 
(JGR 100, 5599, 1995, eqs. 24-26). 

 
4.8.1      The Magnetopause 
 
   Sibeck et al. [1991] approximated the shape of the magnetopause by an axisymmetric surface. If in GSM 
(or in aberrated AGSM)  
 
     R2  = y2 +  z2    (126a) 
 
then the magnetopause is approximated by an ellipsoid 
 
  F1(r)  =  R2  +  S1 x2  +  S2 (p/p0)1/6 x  +  S3 (p/p0)1/3   =  0 (126b) 
  
where p is the solar wind dynamic pressure, with p0 = 2.04 its average value,  
S1  =  0.14, S2 =  18.2,  S3 =  − 217.2, and where all distances are in units of the Earth radius RE.  In 
simulating the mission we assume p = p0 and neglect the factors with p/p0, but they might come useful in 
later work. Eq. (126b) also ignores the effects of the interplanetary magnetic field, whose effects were also 
studied in that article and in later work by the same authors. 
 
  The distance rs of the subsolar point (“nose of the magnetosphere”) is obtained by solving for R=0: it is 
very close to 11 RE. 
 
For the regions characterized by IREG=1 and 2 we next seek two additional ellipsoids enclosing the 
surface, one on the inside, one on the outside, cutting the x-axis at rs ± 1 RE.  It would be easy to define 
such surfaces by scaling all distances in (126) by the appropriate factor k, in a way similar to what is done 
for the bow shock in the next section, giving ellipsoids of the same shape but different scales.  That 
however causes the ellipsoids to be most widely spaced at the subsolar point, whereas the boundary layers, 
for instance, are narrowest there.   
 
  Instead, therefore, we choose the two other ellipses to have the same foci as the one of (126b), making the 
spacing smallest at the subsolar point.  If the factor (p/p0) in (126b) is ignored (i.e. is equal to 1; it can 
easily be reinstated) and  
   A  =  S1 B  = S2/2S1        C  =  S3  − S2

2/4S1 
then 
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   F1(r)   =  R2 +  A2(x + B)2  =  C    (127a) 
 
The semi-major axis is then a  = C/A, the distance δ between the foci is 
 
     δ   =  2a  (1 − A2)1/2    (127b) 
 
and the foci are on the x-axis at x = −B  ± δ/2.  To assign a given point, we form its distances (R1, R2) from 
the two foci: if 
 
          2 (a − 1 )  <  R1 +  R2 < 2a 
the point has IREG=1, and if 
      2 RE  <  R1  +  R2 < 2 (a + 1) 
 
it has IREG=2. If R1 + R2 is bigger still, the point’s position relative to the bow shock should be tested. 
 
4.8.2      The Bow Shock 
 
   Fairfield in 1971 approximated the shock position in AGSM by a hyperboloid (one rather close to a 
paraboloid) 
 
   F2(r)  =  R2  +  A xR  +  B x2  +  C R  +  D x  + E  = 0  (128) 
where 
 A = 0.0296 B = − 0.0381  C = − 1.28 D = 45.644 E = − 652.1 
 
The subsolar distance is close to 1.3  rs.  As in the SSC code, this distance can be scaled so that when 
different values of (p/p0) change rs, the hyperboloid scales to a larger or smaller one of the same shape but 
still cuts the x-axis at 1.3 xss. Such scaling occurs if we replace 
 
    R  →  kR  x  →  kx 
 
The subsolar point of the hyperboloid is reached when R=0, i.e. when 
 
    B (kx)2 +  D (kx)  + E  = 0 
 

    kx  =  
1

2B  ( − D  + [D2  − 4BE]1/2)     = x0  (129a) 

 
Here x0 is a constant derivable from the constants of (128).  If the subsolar distance of the magnetopause is 
xss, the value of x for which (133a) is satisfied should be 1.3 rs, hence 
      k  =  x0/1.3 rs   (129b) 
 
Equation (128) is then modified by multiplying (R2, A, B) by k2, and (C,D) by k.  If F2 > 0, the point is in 
the solar wind, otherwise it is inside the bow shock. 
 
4.8.3      The Equatorial Surface 
 
If the Earth’s dipole is perpendicular to the direction of the solar wind--as happens twice a day in two parts 
of the year, near equinox--then the magnetospheric field is expected to have north-south symmetry across 
the equatorial plane zsm = 0. 
 
  At all other times the equatorial surface (which may be defined as the surface where Bρ  reverses sign, 

where ρ2 =  x2+ y2) is observed to be deformed. Near Earth it approximates the dipole’s equatorial plane, 
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while in the fat tail its field lines tend to become aligned with the ± xsm direction, defined by the solar 
wind.   
 
  Observations suggest that near midnight each the plasma sheet behaves as if attached to the equatorial 
plane of the dipole at a distance of about RH = 8 RE, so that it is displaced from the z=0 plane by RH sinψ, 
up to about 4 RE.  However, the magnetopause is observed to depart very little from north-south symmetry, 
even when ψ is large.  
 
  Since the northern and southern halves of the tail contain the same amounts of magnetic flux, one would 
then expand the “hinging” to expand one side of the tail and compress the other, reducing the magnetic 
field intensity B on the expanded side and increasing it on the compressed one.  Plasma pressure 
considerations however require B in the northern and southern tail lobes, at any given distance, to be about 
equal.  Hence the equator warps in a way that displaces it near the flanks in the opposite direction to its 
displacement near midnight: if at midnight the equator is displaced northward, its sections near the 
magnetopause move southward. 
 
  Empirical formulas for such displacements were derived by Fairfield, Gosling and others, but the one used 
here is due to Tsyganenko and is also used by the SSC. The use of that formula however needs 
modification, because it does not give the equator as defined by Bρ, instead, it gives the center of a current 

distribution used as the source of the tail field in Tsyganenko’s model.  Far from Earth, this is very close to 
the center of the displaced plasma sheet, but near Earth the fields of the dipole and ring current enforce 
their own symmetry, which tends to center on the dipole equator, whose shape is flat, not warped. 
 
       Because of that, the full Tsyganenko formula is only used tailwards of xsd = − 8 RE (xsd is the x-
coordinate in the solar dipole frame, with the z axis along the dipole and xsd  in the GSM y=0 plane).  
Sunward of xsd = 0, the dipole equator is used, and for 0 > xsd  > −8, the part of the formula expressing the 
y-dependent warping is linearly interpolated as a function of xsd.  
 
  The shape of the equatorial surface is given by a function 
 
      z  =  zs(x,y,ψ)   (130) 
 
with ψ the tilt angle: zs is the distance on must move north from (x,y,0) (or south, if zs < 0) in order to 
reach the equatorial surface.  Tsyganenko approximated 
 
     zs(x,y,ψ)   =   zs1(x,ψ)  +  zs2(y,ψ)  (131a) 
with 
 zs1(x,ψ)  =  0.5 tanψ [(u2 − 2RHx cosψ)1/2 − (u2 + 2RHx cosψ)1/2] (131b) 
where 
      u2  =  x2+ (RH

2 + Δx2)cos2ψ 
and 

     zs2(y,ψ)  =  G sinψ  
y4

y4 + L4      (131c) 

 
Here RH = 8 RE is the hinging distance, and for small values of ⎢x⎥, (135b) gives 
    

     zs1 (x,ψ)  →  − 
x
u      RH sinψ   (132) 

 
Other constants (all measured in RE) are Δx = 4, L = 10, G = 10.  By (131b), zs1 smoothly tends to near the 
dipole equator as x approaches zero, and is therefore retained in the range 0 > x > −8.  However, zs2 does 
not change to match the flat dipolar equator, and is therefore multiplied in that region by a (positive) factor  
0 < −xsd/8 < 1. 
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 4.9    Launch Windows 
 
4.9.1      General Considerations 
 
Since "Profile" satellites are meant to be small and cheap, they are not expected to carry any propulsion. 
The only control over their orbit is then an appropriate choice of launch conditions.  If the launch is 
assumed to be from Cape Canaveral and towards the East, only a few adjustable parameters remain. Two 
parameters are obviously the time of day of the launch and the day of the year on which it takes place.  
 
   A third parameter is available if a 4-stage launcher is used, so that the first three stages place the "Profile" 
bus in a circular parking orbit and the 4th stage then injects it into its long ellipse. The delay between 
launch and injection then provides a third parameter determining the choice of orbit. 
As will be seen, the first and third parameters determine Ω and ω of the orbit; the orbital inclination i is 
fixed by the latitude of the launch, which is 28.50.  
 
  Not considered here are possible shifts of the launch direction from east, which modify i and require 
rather small Δv. Also, the parking orbit will be assumed to begin at Cape Canaveral, latitude 28.50  and 
longitude − 80.50; in an actual launch, a certain horizontal distance is covered by the rocket, and the 
parking orbit is entered further east. The injection by the 4th stage is similarly assumed to be instantaneous. 
It is assumed that all orbits obtained here are also feasible with acceleration distances taken into account, 
though the firing times may have to be shifted. 
 
  Before selecting launch parameters, one must decide on criteria for evaluating candidate orbits. 
Obviously, the orbital lifetime should be long, and perigee height should not drop into the atmosphere, but 
rather, rise higher. These considerations involve the perturbation of the Sun, Moon and the Earth's 
equatorial bulge, and will be dealt with in a later section, but it can be stated here that date of launch is the 
most useful variable here. 
 
  For a magnetospheric mission, coverage of the plasma sheet should be as extensive as possible, since 
that region is the sources of aurora, substorms and other activities. Naively one may expect that an orbit 
whose plane is close to the ecliptic is best here. Unfortunately, orbits close to the ecliptic also spend 
relatively long times in the Earth's shadow, where electric power is not produced, the satellite cools down 
drastically and stored electricity must be used to keep batteries from freezing. 
 
 4.9.2      Determining ω  and Ω   
 
   In each revolution of the Earth, the 
radius from the origin to Cape 
Canaveral describes a cone with half-
opening angle 900 − 28.50 = 51.50. 
Because the Earth's axis is inclined to 
the ecliptic by an angle ε ≈ 23.50 , the 
angle between the radius to Cape 
Canaveral and its projection on the 
plane of the ecliptic varies each day 
between 28.50 − ε ≈ 50  and 28.50 + ε  
≈ 520 (see figure).  
 
  The orbital plane of the satellite is 
tangential to the cone at the point of 
launch, and its inclination ie to the plane 
of the ecliptic therefore also has the 
range  
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      28.50 − ε < ie < 28.50 + ε 
 
The actual value of ie will depend on the time of launch. Each day has one "reference time" tr at which a 
launch gives the bus carrying the satellites its smallest possible ie, about 50. The orbit obtained by 
launching at that time and immediately following that with 4th stage firing will be termed the reference 
orbit. 
 
Suppose the plane of the paper in the above figure includes two generating lines of the cone, specifically, 
the ones with smallest (50) and largest (520) values of ie. Then the ecliptic xe axis is perpendicular to the 
paper and is directed out of it.  
 
  The plane of the reference orbit, tangential to the cone along AO, is also perpendicular to it, and it follows 
that the xe axis lies in the orbital plane. However, the xe axis is the same as the celestial x axis, and 
therefore also lies in the celestial equator.  This makes it the line of nodes of the reference orbit, so that this 
orbit has 
     Ω  =  0    (133) 
 
 If the 4th stage fires at point A, and it is assumed that the final speed is acquired there instantaneously 
(again, an approximation), then point A will also be the perigee point of the orbit. Thus the angle between 
the line of nodes (which is also the x-axis) and the radius to perigee is 900, providing another orbital 
element 
     ω = 900    (134) 
 
   
   Even though the reference orbit 
has the smallest possible inclination 
to the plane of the ecliptic, it does 
not provide very good coverage of 
the plasma sheet. The preceding fig-
ure gives the orientation of that orbit 
in (xe,ye,ze) space, where the Sun 
appears to rotate in the course of the 
year around the  (xe, ye) plane. 
 
  Perigee is at point A in the (ye, ze) plane, and apogee is in that plane too, on the other side. For apogee to 
be in the middle of the tail, the Sun must be on the same plane, i.e. at the winter solstice (see figure).  
Because the plasma sheet behaves as if it were hinged to the dipole equator (and here the difference 
between geographic and dipole equator is neglected), it will move away from the ecliptic, to the side of the 
ecliptic opposite the one of the orbit, greatly reducing tail coverage by the satellites. 
 
  Given a free choice of the time when the 4th stage ignites, this is readily remedied. If the firing is delayed 
until the satellite has moved 900 away from point A (a quarter-period for a circular orbit), it will be on the 
x-axis, placing both perigee and apogee on that axis--perigee with negative x, apogee with positive. Apogee 
is then in the tail during fall equinox, when plasma sheet deformation is at its smallest, giving very good 
tail coverage. 
 
   Alternatively, if firing is delayed until a 2700 arc has been completed, apogee will be in the tail at the 
spring equinox. Of course, either delay can be increased by an arbitrary whole number of orbital periods. 
 
  The general orbit can thus be characterized by two numbers.  One is the delay δ1 (of either sign, in degrees 
or in hours, 1 hr = 150) of the launch time relative to that of the reference orbit. The other is the length of 
the "coasting arc" δ2 (in degrees), spent in the parking orbit between launch and 4th stage ignition. In terms 
of orbital elements 
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     Ω  =  δ1 
     ω  =  900 + δ2   (135) 
 
4.9.3      Eclipses 
 
All “Profile” satellites are expected to pass through the Earth’s shadow once per orbit. During an eclipse, 
solar cells provide no power and the satellite cools down. Scientific data-gathering will probably have to 
stop, but power is still needed for heating batteries to keep them from freezing, and also for maintaining 
essential functions, e.g. for the computer’s memory and clock.  Eclipses near perigee are brief and will not 
be considered here, but distant ones pose a serious problem.  
 
  The previous section concluded that the best coverage of the plasma sheet is achieved by orbits with 
minimal inclination ie to the ecliptic and with apogee on the x-axis (Ω=0, ω = 0 or 1800). Unfortunately, 
placing the apogee on the x axis means that once a year, near one of the equinoxes, it will be in the Earth's 
shadow.  Near apogee the satellites moves very slowly, and their eclipses there are quite long. Because of 
the smallness of ie, before and after that equinox other distant parts of the orbit will also hit the shadow, 
causing additional long eclipses. 
 
  As long as we plan to cover the plasma sheet during equinox, 
this problem will persist, because at that time of the year, the 
Earth's shadow is also cast right down the plasma sheet.  Any 
practical orbit thus requires a certain compromise. 
 
       One way of obtaining a better understanding of distant eclipses is to express the direction of the vector 

ξ̂     , pointing towards perigee, in ecliptic coordinates (xe,ye, ze). Using the transpose of the matrix A of eq. 
(79), we have here 
    ξ      x 
    η          =   AT          y     (81) 
    ζ      z 
 
Let the top row of AT  be (a1, a2, a3).  Then 
 

     ξ̂        =  a1x̂       + a2ŷ       + a3ẑ        (136) 
and by eq. (79) 
    a1   =    cosω cosΩ  −  cosi sinω sinΩ 
    a2   =    cosω sinΩ  +  cosi sinω cosΩ  (137) 
    a3   =    sini sinω  
By (95) 
   x           xe     1           0          0          xe 
   y      =   A3

T       ye    =      0        cos ε   −sin ε      ye     (138)         
   z   ze     0   sin ε    cos ε       ze 
 
where ε =  23.450 is the inclination of the Earth's axis.  Thus 
 
  x  =  xe      y = yecos ε − zesin ε         z = yesin ε + zecos ε  (139) 
 
Hence by (137) 
 
  ξ  =  a1xe +  (a2cosε + a3  sinε) ye +  (−a2 sinε + a3cosε) ze  (140) 
 
 with a similar relation between unit vectors.  
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  The orientation of ξ̂      in space may then be expressed by the 

angles (χ1, χ2) defined in the figure. If  ξ̂     e is the projection of 

ξ̂      on the (xe, ye) plane, i.e. on the ecliptic, then χ1 is the angle 

between ξ̂     e and  ξ̂      while χ2  is the angle between ξ̂     e and the 

x̂    e  direction. We have from the scalar product 
   

        sinχ1  =   ξ̂      . ẑ    e  =  −a2 sinε + a3cosε          (141) 
 

  Also, tanχ2  is the ratio between the ye  and xe components of ξ̂     , i.e. 
 

   tanχ2 =   
a2  cose + a3 sinε

a1
        (142) 

 
The angle χ2 indicates the time of the year when perigee is on the midnight meridian: for instance, if χ2 = 
(0, 900,1800, 2700), this happens on an equinox or solstice in (fall, winter, spring, summer).  Since apogee 
is always on the opposite side of Earth from perigee, it follows that for the same four values of χ2, apogee 
is in the tail in (spring, summer, fall, winter). 
 
  More generally, let Ωs be the angle between the 
direction of the Sun and the x (or xe) direction. To 
calculate its approximate value, assume the spring 
equinox falls on day 80 of the year and the Sun’a 
motion around the ecliptic is uniform.  Then on day-
of-the-year D 
 

             Ωs ≈ (D − 80) 
360
365     

 
Then as the figure makes clear, apogee is at midnight 
on the day when Ωs = χ2, i.e. for day 

            D  =  (365
360    ) χ2 + 80 

 
(subtract 365 if the sum exceeds 365). 
 
   The angle χ1 indicates the displacement of perigee 
(and hence also of apogee) from the plane of the 
ecliptic. 
 
   If χ1 is small, apogee is close to the ecliptic, and the 
orbit may be vulnerable to long eclipses far from 
Earth. If then χ2 = (0, 1800) apogee is in the tail  
during equinox and plasma sheet coverage is good; if on the other hand   
χ2 = (900, 2700), apogee will tend to miss the midnight plasma sheet, because the warping effect is then at 
its greatest and the midnight plasma sheet, being hinged to the magnetic equator, is displaced from the 
plane of the ecliptic.  If χ1 is large, e.g. χ1 > 450, apogee will always miss the plasma sheet, no matter what 
the value of χ2 may be.  
 
 
4.9.4      Eclipses in Keplerian simulations 
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In the first round of simulations, described further below, 12 satellites of a simulated “Profile” mission 
were followed for a year, assuming strict Keplerian motion, and were were examined once every hour. 
Each time note was taken, among other things, of whether the satellite was in the Earth’s shadow beyond r 
= 2 RE and if so, a tally was kept of the number of later checks which found it still eclipsed. 
 
   The Earth’s shadow was assumed to be a cylinder of radius 1 RE with its axis along the Sun’s direction. 
That seemed a reasonable approximation, considering that at r=20 RE the penumbra--the region in which 
some of the Sun is obscured but not all of it--is only 0.2 RE wide. One-time shadow passes were taken to be 
1 hour long, whose with two consecutive positions in the shadow 2 hours, and so on. 
 
 The orbit with greatest plasma sheet coverage (Ω = 0, ω = 1800) and orbits close to it had conspicuous 
“shadow seasons” around the fall equinox, with eclipses lasting up to 7 hours at its peak. Relatively long 
eclipses also existed before and after the peak, their duration decreasing as one went away from the time of 
their peak. For other orbital conditions, less severe “shadow seasons” were noted, and at times two peaks 
were found, with various separations. 
 
  Eclipses are best studied in the frame of ecliptic coordinates (xe, ye, ze) which, like the celestial frame 
(x,y,z), is also an inertial frame. Consequently one can calculate in it orbital elements, distinguishing them 
by subscript “e”. The three elements (ae, ee, le) are the same in both frames, but the remaining three (ie, ωe, 
Ωe) are not and must be derived separately. 
 
  The derivation is quite similar to that of (i, ω, Ω), which started from the matrix A for which 
    x   ξ 

    y = A . η   (78) 
    z   ζ 
 
and whose terms could also be expressed by (i, ω, Ω).  Using the factorization (87) of A, equations were 
obtained which allowed the three angles to be computed.  Since by eq. (95)  
 
 xe  1 0 0 x   x 

 ye = 0      cosε     −sinε y =       A3 . y (95b) 
 ze  0      sinε       cosε z   z 
 
we get 
    x   ξ 

    y = a . η   (143a) 
    z   ζ 
where 
    a =  A3A     (143b) 
 
The whole procedure can then be repeated, but with 
aij  replacing Aij everywhere. 
 
    If ie is not small, eclipses can occur only near two 
points on the orbit, the two points at which it 
intersects the ecliptic, located on the line of nodes 
(top Figure).  
 
  One can then divide the orbit into two unequal parts 
by a line through the origin, perpendicular to the long 
axis of the orbit (bottom Figure): the small “near” 
part centered on perigee, and  
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the much larger “distant” part centered on apogee. 
The line of nodes passes through the origin too and it 
therefore has one orbital intersection in each part. 
Eclipses that occur in the “near” part, however, are 
not counted; therefore only distant ones contribute to 
a “shadow season” and only one such season per 
orbit is expected. 
 
  Calculating the time of that season is similar to 
deriving the effect of χ2: the Earth’s shadow is 
projected along the line of nodes twice a year, when 
Ωs equals either Ωe or Ωe+1800. The first of these is 
when the shadow is directed towards the distant 
crossing.  Thus the “shadow season” is expected to 
peak when 
  Ωs  =  Ωe   (144) 
 
  The shadow season is expected to become shorter when ie increases, because steeply inclined orbits 
quickly move away from the shadow cylinder. Eclipses are longest when ωe = 0, 1800 and shadows occur 
at apogee, and shortest when ωe = 900, 2700 at which time they occur so close to Earth that they might even 
miss being counted at all. 
 
  For orbits with small inclination ie the situation is somewhat different, because eclipses can now occur 
even some distance from the line of nodes; in the limiting case of ie = 0, they can occur in any part of the 
orbit. If ωe is near 00 or 1800, eclipses occur near apogee and one can expect a long season around them.  If 
on the other hand ω is near 900 or 2700, apogee will be relatively far from the ecliptic, but eclipses can 
extend for some distance along the line of nodes on both flanks of the orbit: in that case two moderate 
shadow seasons are expected.  
 
  In summary, it seems that eclipses are best avoided if ie is moderately large, e.g. 100. However, 
perturbations due to the Moon etc. will cause ie to change with time, and that change must also be 
simulated, throughout the mission.  Ultimately it may well turn out that the ability to survive long eclipses 
(e.g. up to 3 hours or even more) will be one of the requirements of a protracted mission.  
 
 
4.10  Simulation of Magnetospheric Coverage 
 
4.10.1  The ORB5 code 
 
To provide information on the expected coverage and to test the preceding ideas , a Fortran code ORB5 
was produced. Its inputs are a launch date and the launch parameters (delay and coasting arc) which 
determine the angles  
(δ1, δ2) of (135). Its outputs are statistics of region occupancy, eclipses and other features over the course 
of one year, or more accurately, over a time span of 52 weeks (364 days). 
 
  The code employs a number of subroutines: ORBEL produces orbital elements corresponding to given 
values of (r0,v0), while ORBPT inverts the process and gives r for any given time t (v can also be extracted, 
but was not included because it is rarely needed). TRANS4 (a package of several small codes) calculated 
rotation matrices between various frames at a given time t,  MSREG assigned a region in the 
magnetosphere to a given (x,y,z,t) and NSHEET found the value of z in the neutral sheet (or more 
generally, on the equatorial surface) corresponding to given (x,y,t). The usual altitude of perigee was 1.1 
RE. 
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  The orbit with minimal ie has the property that its perigee is in the yz plane, while the sidereal time at a 
given point is the angle between its meridian and the xz plane. We now use a formula by Meeus  [1991, eq. 
11.3]  for the sidereal time θ0 at Greenwich at UT=0 on a given Julian date (i.e. for a Julian time that 
ends in 0.5). Launch from Cape Canaveral for a satellite attaining the orbit with smallest ie  must be at the 
UT corresponding to θ0 = 170.50, because Greenwich lies 80.50  east of Canaveral and the meridian of Cape 
Canaveral should be on the yz plane which is 900 east of the xz plane. Introducing (δ1, δ2) of (135), a delay 
of the launch by δ1/15 hours shifts Ω by δ1 degrees, while allowing the satellite to coast in its parking orbit 
over and angle δ2 + 900  shifts ω by the same amount. Both the delay and the "coasting arc" are entered 
from the keyboard.  
 
  The calculation is quite fast, because the orbit is fixed in inertial space and  the orbital period is an integral 
number of hours, 48 in this case. Thus whenever the position of the multiprobes is examined, any of them 
can only occupy one of 48 set positions.  As time advances hour by hour, it is only necessary to permute the 
satellite positions around the orbit and they never have to be recalculated.    
 
  However, the positions of the multiprobes relative to the magnetosphere--even relative to the averaged 
magnetosphere--varies constantly, as the angle between the major axis of the orbit orbit and the solar wind 
undergoes its annual 3600 rotation, while the tail sheet warps and the dipole axis turns with the Earth's own 
diurnal rotation. Thus the transformation matrices to the GMS frame must be recalculated every hour.  For 
every one of those hours, the program collects information about the frequency at which various types of 
coverage occur. 
 
   Obviously, at each position and for each satellite, subroutine MSREG must assign the satellite to one of 
10 regions of the magnetosphere (though the latitude is never high enough for region 9); to assign tail 
regions, MSRG in its turn calls NSHEET.  
 
  Since it was assumed that no data are collected during eclipses, any satellite in the Earth's shadow is not 
included in any other statistics.  In the simulation, each satellite, at any time, was assigned a status number 
LS, telling how many hours it had spent in eclipse: whenever the satellite was found to be eclipsed, its LS 
is increased by 1. If the satellite was not eclipsed, its current value of LS was examined, and if that value 
was not zero, the tally of shadows of length LS for that particular week was increased by 1, and LS was 
reset to zero. 
 
  Statistics were furthermore collected for any hour (out of 168 hours per week) on the number of satellites 
simultaneously in the plasma sheet, in the range rmin < r < rmax, where radial limits were specified from 
the keyboard. Finally, the number of satellites which at any hour were within ±1 RE of the magnetopause 
was also recorded. 
 
  Such statistics were compiled week by week, as well as for four "seasons" of 13 weeks each and for the 
entire "year" of 364 days. The sample orbits listed in Tables .......  were obtained for the "reference orbit" 
and for a "good" orbit, both assuming launch on 7.25.1997. The distribution of eclipses of various lengths 
occuring for the "reference orbit" outside r=2 RE  is also given here, with superimposed eclipses of the 
"good" orbit in parentheses. 
 
4.10.2   The ORB6 code 
 
  While the preceding simulation provides a fair view of the coverage of the magnetosphere by "Profile," 
the mission actually planned differs in one important way, namely, it would include two groups of 6 
satellites, with slightly different orbits. A simulation code ORB6 was therefore developed from the 
preceding one, tracking two groups of satellites, one with period 48 hours and one with a period 46 hours. 
 
  All the preceding statistics were again collected, but weekly statistics were also tallied for the following 
additional "constellations": 
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(1) At times the satellites covered the plasma sheet for rmin < r < rmax  on both legs of the orbit, outbound 
from Earth and inbound, giving a somewhat  

 2-dimensional coverage. ORB6 then recorded the number of weekly hours (out of a total of 168) 
during which the two sides of the plasma sheet (neutral sheet ± 3 RE) were covered by (2,2), (2,3+) 
or (3+,3+) satellites. 

 
(2) The two-group mission makes possible "superclusters" of 8, 9, 10 or 11+ satellites,  all in the region r > 

19 RE, near apogee.  The number of weekly hours for each "supercluster" size was recorded, and as 
expected, it peaked in a 7-week cycle, corresponding to the time needed for one group to overtake 
the other. 

 
    The number of superclusters in the plasma sheet (neutral sheet ± 3 RE) was also recorded: these 

tended to occur in two of the specific "seasons", 7 weeks apart. 
 
(3) ORB6 also tallied the number of hours each week when at least 2 satellites were simultaneously in each 

of 4 regions--solar wind, magnetosheath (far from the magnetopause), ± 1 RE of the magnetopause 
and the inner magnetosphere.  Tally was also kept of the hours when the requirement for the solar 
wind was not satisfied (e.g. when the satellites may have been too far from the Sun-Earth line to 
reach the bow shock) but with (2+, 2+, 3+) satellites in the other three regions. 

 
   Some results are given in table .... . Actual orbits, of course, gradually change their elements due to 

external perturbations, but if such changes are known, similar codes can also be written for them. 
 
 
4.11  Orbital perturbations 
 
4.11.1      The Disturbing Acceleration a 
 
Let subscripts (1,2,3,4) refer to (Earth, satellite, Moon, Sun), and let G be the gravitational constant.  Then 
equations (8) can be generalized to 
 

 
d2r1

dt2       =  G 
m2

r12
3 (r2− r1)      +   G 

m3

r13
3 (r3− r1)      +   G 

m4

r14
3 (r4− r1)     (145a) 

 

 
d2r2

dt2       =  G 
m1

r21
3 (r1− r2)      +   G 

m3

r23
3 (r3− r2)      +   G 

m4

r24
3 (r4− r2)     (145b) 

 
The vectors ri are in inertial space, and since all four bodies move, none can provide a fixed point to which 
they can be referred.  However, one can deal exclusively in differences. Let 
 
 r =  r2 − r1  ρ3 =  r3 − r1  d3 =  r2 − r3  =  r − ρ3 (146a) 

    ρ4 =  r4 − r1  d4 =  r2 − r4  =  r − ρ4 (146b) 
 
         ( r is vector Earth to satellite 
            ρ i is vector from Earth to ith body,  
           di vector from ith body to satellite)  
 

 Substracting (145a) from (145b), with µ = G(m1 + m2)  ≈ Gm1  =  g RE
2 

 

      
d2r
dt2      +  

µ
r3     r = − µ 

m3

m1
     [ 

1
d3

3     d3 + 
1
ρ3

3     ρ3]  − µ 
m4

m1
     [ 

1
d4

3     d4 + 
1
ρ4

3     ρ4]  
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      = − µ 
m3

m1
     [ 

1
d3

3 (r−ρ3)     + 
1
ρ3

3     ρ3]  − µ 
m4

m1
     [ 1

d4
3 (r−ρ4)     + 

1
ρ4

3      ρ4]  (147)  

 
The perturbation caused by the moon needs no further attention, but that of the Sun does, because it 
contains two large terms of opposite signs, almost equal. We have 
                   d4

2 =  (r − ρ4)2 ≈  ρ4
2 −  (2r.ρ4 − r2)   

 
                         =  ρ4

2(1 − [2r.ρ4 − r2 ] /ρ4
2)   = ρ4 (1 − SCP) (148a) 

 
where the scalar product term SCP is <<1. Then 
 

      d4
−3 ≈  ρ4

−3 (1 − SCP)−3/2  ≈  ρ4
−3 [1 +  

3
2     SCP  +   (−3

2   
−5
2   

1
2     ) SCP2]  = 

 
         =  ρ4

−3 (1 + SCP*(1.5 + 1.875*SCP))   
 
       =  ρ4

−3 (1 + SCPA)  (148b) 
The last brackets in (147) thus become 
 

  [ 1
d4

3 (r−ρ4)     + 
1
ρ4

3      ρ4] ≈   
1
ρ4

3     [ (r−ρ4)(1 + SCPA) + ρ4 )]  = 

                                      ≈   
1
ρ4

3      [ r (1 + SCPA) −  ρ4 SCPA]  (149) 

 
Hence the perturbing acceleration a, on the right side of eq, (13), is very nearly 
 

   a =   − µ 
m3

m1
     [ 

1
d3

3 (r−ρ3)     + 
1
ρ3

3     ρ3]  − µ 
m4

m1
   

1
ρ4

3      [ r(1 + SCPA) −  ρ4 SCPA]  (150) 

 
where ρ3 is the vector from Earth to the moon, ρ4 is from Earth to the Sun, and d3 is the magnitude of 
(r−ρ3).  Approximation (149) may also be used for the moon, but seems too inaccurate there.  We used the 
values  
 
   µ (mmoon/mearth)  =   4.8964796 1012 
      (msun/mmoon)    =  2.707309 107 
 
 
4.11.2      Orders of Magnitude 
 
The distance to the moon is about 1/400 AU. The mass of the moon is 1/80 that of the Earth, which is in 
turn ≈ 106  times smaller than the Sun’s.  We assume r is about 1/3 of d3. 
 

  Then the order of magnitude of the solar terms compared to the lunar ones is 
 
              80 . 106 . (1/3) . (1/400)3  =  80/192  ≈ 0.4 
 
Thus the terms are comparable.  The moon’s attraction on the satellite is largest when the satellite is at 
apogee and the moon happens to be in the same direction. "Profile" apogee is about 1/3 the moon’s mean 
distance, and the distance to the moon is then twice that to Earth, the moon’s mass is 1/80, making the 
attraction 
    (1/80) . (1/4) = 1/320 
that of Earth. 
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4.11.3       The Non-Spherical Earth 
 
  The gravity field of a nonspherical Earth is usually expressed by assuming it is given by a scalar potential 
V 
     a = −∇V     (151a) 
 
and that V is given by an expansion in spherical harmonics. The potential V is assumed to be given, and 
has been obtained directly from the orbital variations of satellites in low Earth orbit.  The biggest effects are 
the ones due to the Earth's oblateness, especially the second harmonic term J2.  
 
  We neglect the asymmetric terms, which are small and rather troublesome--expressed in geographic 
coordinates, they must be transformed to the celestial frame, a time-dependent transformation. The 
axisymmetrical terms need not be transformed, since (r,θ) are the same in geographic and celestial 
coordinates, and they include the dominant J2  term. Thus 
 

   V  =  
Gm

r      [1  −  Σ2 Jk (
Req

r     )
k 

Pk(cosθ)]   (151b) 

 
where the Earth's equatorial radius is Req= 6378.39 km. We have 

   P0  = 1 P1 = cosθ P2  =  
1
2 (3cos2θ − 1)         P3 = 

1
2 (5cos3θ − cosθ)     (152) 

 
and recursively for any k (ν = cosθ) 
 
  k Pk(ν)  − (2k−1) ν Pk−1(ν)  +  (k−1) Pk−2(ν)  =  0  (153a) 
From this 
 
  k P'k  − (2k−1)[ν P'k−1 + Pk−1]  +  (k−1) P'k−2  =  0  (153b) 
 
which allows the derivative P'k to be derived recursively as well, starting from P'0 = 0,  P'1 = 1.  
   We derive ∇V in mixed coordinates, in terms of spherical r and cylindical z (ultimately, we aim at 
cartesian components). For a satellite's motion, Gm = µ and we have 
     cosθ = z/r     (154) 
hence for unit mass 
   V  =  µ/r  −  µ Σ2 Jk Req

k r−(k+1)  Pk(z/r)   (155) 
 

    ∇V  =  − 
µ
r3     r  −  µ Σ2 Jk Req

k[ (−(k+1)r−(k+3) Pk − z r−(k+4) P'k) r  + r−(k+2) P'k ẑ     ] 

           (156) 
However, an identity exists 
     P'k+1 − ν P'k  =  (k+1) Pk   (157) 
so  

          ∇V  =  − 
µ
r3     r  +  µ Σ2 Jk Req

kr−(k+3)[ P'k+1(z/r) r  −  r P'k(z/r) ẑ     ] (158) 

 
The acceleration due to oblateness is then  
 

           a  =   
µ
r3     Σ2 Jk (Req/r)k [ P'k+1(z/r) r  −  r P'k(z/r) ẑ     ]  (159) 

 
Accepted values of the coefficients, in units of 10−6, are  [reference...} 
 
    J2  = 1082.63       J3  = − 2.54     J4  = − 1.62        J5  = − 0.23        J6  = − 0.55 (160) 
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4.11.4    Low Precision Formulas for Postions of Sun and Moon 
         
The Astronomical Almanac gives "low precision formulas" for the location of the Sun(p. C-24) and the 
Moon (p. D-46). Meeus [1991]  has corresponding formulas: the one for the Sun is similar, but the one for 
the moon however is much longer and presumably more accurate,  Since we use these bodies only to derive 
small perturbing terms, the formulas of the almanac were deemed sufficient. 
 
Sun  

 
On Julian date JF, let 
     n = JD - 2 451 545.0    (161) 
 
This is equivalent to T in the formulas of Meeus, except that n is in Julian days whereas T is in Julian 
centuries (T = n/36525).   
Then the mean longitude of the Sun, "corrected for aberration" (which may explain the difference between 
the leading terms below) 
 
    L  =  280.461 + 0.985 6474 n   (162a)  
whereas Meeus gives 
    L  =  280.46645 + 36000.76983 T +  0.0003032 T2 (162b) 
 
  
The mean anomaly (of the Earth) in degrees is 
 
    g  =  357.528 + 0.9856003 n    (163a) 
 
whereas Meeus denotes it by M and uses 
     
     M  =  357.5290 + 35999.05030 T  − 0.000 1559 T2 − 0.000 000 48 T3    (163b) 

 
Ecliptic longitude, in degrees 
 
    λ  =  L  + 1.915 sin g  +  0.020 sin 2g  (164a) 
 
while Meeus gives on top of p. 152 as “true longitude” 
 
  Θ  =  L  + (1.914600 − 0.004 817 T − 0.000 014 T2) sin M 
 
  + (0.019 993 − 0.000 101 T) sin 2M  +  0.000 290 sin 3M  (164b) 
 
The ecliptic latitude of the Sun by definition is zero, so the above gives the Sun's position on the celestial 
sphere. 
 
Obliquity of the ecliptic, the angle between the Earth's axis and the ze  direction perpendicular to the 
ecliptic 
 
   ε  =  23.439  − 0.000 0004 n     (165) 
 
(Meeus has an equivalent formula but in degrees, minutes and seconds, with terms to order T3) 
 
Distance R to the Sun, in astronomical units (AU) 
 
   R  =  1.000 14 − 0.016 71 cos g − 0.000 14 cos 2g  (166) 
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Meeus gives   
   R  = 1.000 01018 (1 − e2)/1 + e cosv 
 
where v is the true anomaly  v  =  M + (O.      − L). To convert R to meters it is multiplied by 1 AU = 
1.49599 1011 meters.  The ecliptic coordinates of the Sun are then 
   (xe, ye, ze) = (R cosλ, R sinλ, 0)    (167) 
 
and the Sun's celestial coordinates 
 
   (x, y, z) = (xe, ye cosε, ye sinε)  =  (R cosλ, R sinλ cosε, R sinλ sinε)      (168) 
 
The declination δ is the angle from the celestial equator: thus (900 − δ) is the angle to the celestial z-axis, 

and its cosine is (R̂    .ẑ    ). It follows that  
 

    sin δ  =  (R̂    .ẑ    ) = sinλ sinε   (169) 
 
Right ascension α satisfies tgα = ye/xe, hence 
 

    tg α =  
cosε sinλ

 cosλ       = cosε tg λ  (170) 

 
 
Moon  
 
  The position of the moon involves long, empirical formulas.  The low precision formulas have 40 terms 
and are accurate to 0.30 in ecliptic longitude λ, 0.20 in ecliptic latitude β, 0.2 RE  in distance r. More 
accurate but much more complex formulas are given by Meeus and contain around 200 terms.  
 
The almanac formulas use the same parameter T as Meeus: 
 

    T  =  
JD − 2 451 545.0

36525         (90) 

 
and defines a set of angles, named here arbitrarily and measured in degrees, as follows: 
 

A0   =   218.32  + 481 267.883 T  
A1 = 134.9 +  477 198.85  T A2 = 259.2 − 413 335.38 T 
A3 = 235.7 +  890 534.23  T A4 =  269.9 + 954 397.70 T 
A5 =  357.5 +    35 999.05  T A6 = 186.6 + 966 404.05 T 
 
B1 = 93.3 +  483 202.03  T B2 = 228.2 + 960 400.87 T 
B3 = 318.3 +      6 003.18  T B4 = 217.6 −  407 332.20 T 
 
P1  = A1  P2 =  A2 
P3 =  A3  P4 =  A4 
 

Then 
 

λ  =  A0   +   6.29 sin A1  −  1.27 sin A2  +  0.66 sin A3  +  0.21 sin A4 
               −   0.19 sin A5   −  0.11 sin A6 
 
β  =  5.13 sin B1  +  0.28 sin B2  − 0.28 sin B3  −  0.17 sin B4 
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These give the ecliptic coordinates of the moon.  to obtain the distance r, one first derives 
 
π  =  0.9508  +  0.0518 cos P1  + 0.0095 cos P2 + 0.0078 cos P3 + 0.0028 cos P4 
 
and then  
   r  =  1/sin π 
 

The three geocentric direction cosines (l,m,n) = (c1, c2, c3), i.e. the scalar products r.ξ̂     ,  r.η̂      and r.ζ̂     , 
are 
 
 c1  =  cosβ cosλ 
 c2 =  0.9175 cosβ sinλ  −  0.3978 sinβ 
 c3  =  0.3978 cosβ sinλ  + 0.9175 sinβ 
 
The celestial coordinates of the moon then are 
 
          x = c1 r  y  = c2r   z = c3r 

 
 
4.11.5      Interpolating the positions of the Sun and Moon 
 
  The calculation of the Moon's position requires 16 trigonometric functions, that of the Sun's position 6. To 
calculate them at each step (and with Runge-Kutta integration, several times in each step) requires 
appreciable computer time. The calculation can be accelerated by the simple strategy of calculating 
positions ahead of time at a number (e.g. 100) of equally spaced values of the time t, and then interpolate 
linearly for any value of t that is given. That is especially important for the Moon, whose position takes 
longer to calculate  and changes more rapidly than that of the Sun. 
 
  A subroutine FILLSUN was coded for this purpose. Given a value Δt, it derives at the beginning of the 
calculation an array of 101 positions of the Sun and Moon, corresponding to elapsed times of 0, Δt... 100Δt. 
After that, it performs two tasks. First, given time T, it interpolates between appropriate values of time and 
obtains the position of the Sun and Moon. And second, if T is within the top 10% of the array's range, it 
renumbers its array, moves its last 11 values to the head of its new list, then derives 90 more positions so 
that a new array of 101 points is available, overlapping the old one in 10% of its length. 
 
  All lunar distances prepared for interpolation are multiplied by a factor FCT slightly larger than unity. The 
reason is that if we interpolate linearly between actual positions of the Moon, for all purposes and intents 
we are replacing the near-circular lunar orbit by a polygon enclosed inside it. In an enclosed polygon, the 
Moon-Earth distance is always smaller than the actual distance, leading to a systematic error. To avoid 
such a bias, the dimensions of the polygon are increased by a factor FCT, in such a way that the area 
enclosed by it approximately equals the area enclosed by the orbit.  Interpolated points then may be outside 
the orbit or inside it, but on the average their distance will be close to the actual average distance. 
 
 Consider the orbital segment between two points A and B. Instead of interpolating along a chord AB, we 
extend the radial distances of A and B by a factor FCT, which moves them to points A' and B', between 
which the actual interpolation is made. The factor is defined by the requirement that the area of the triangle 
A'OB' is the same as that of the circular segment AOB. The area of the segment is 
 
   A1 = r2 θ 

and of A'OB' 
   A2  = 2 (FCT)2  r2 sin(θ/2) 
Since A1 = A2 

    FCT = ( 
θ

2 sin(θ/2)     )
1/2  

(161a
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Expanding  
  2 sin(θ/2) ≈ θ  −  θ3/24 
 
  FCT ≈ (1 − θ2/24)−1/2 ≈ 1 + θ2/48 (161b) 
 
     Say the moon's orbit is divided into 60 segments: then θ = π/30, θ2/48 =  
0.000 2285  and FCT = 1.0002285. With the same time interval, θ for the Sun is smaller by a factor 12, 
making the term added to unity 144 times smaller or  
0.000 00158: for now it will be neglected when dealing with the Sun. 
 
 
4.12 Encke's Method 
 
Encke’s method is a straightforward perturbation calculation, i.e. we assume the motion is close to a Kepler 
ellipse and try to derive the difference. Let 
 

     
d2r
dt2      +  

µ
r3     r  =  a   (162) 

 
Given at t=t0  initial parameters r0 = r(t0), v0 =  v(t0), one can construct an unperturbed ("osculating") 
Kepler motion with those initial values 
 

     
d2ros
dt2       +  

µ
ros

3     ros  =  0  (163) 

 
    Positions and velocities on the osculating orbit at time t will be denoted [ros(t), vos(t)].  Let time advance 
to t = t0 + Δt. Expanding the actual motion 
 

  r(t)  =  r(t0)  +  v0(t0) Δt  +  
1
2  

d2r
dt2(t0)     Δt2 +  ...   (164a) 

 
while along the osculating ellipse 
 

  ros(t)  =  ros(t0)  +  
dros
dt (t0)     Δt  +  

1
2  

d2ros
dt2 (t0)     Δt2 +  ...  (164b) 

 
Subtract (164b) from (164a) and let 
      δ(t) =  r(t) − ros(t)  (165) 
 
Since the two orbits share initial conditions, the two first right-hand terms are the same in (164a) and 
(164b). Subtracting, by (1) and (2) 
 

      δ(t)  =   
1
2      [d2r

dt2(t0)     − 
d2ros
dt2 (t0)    ]Δt2  =  

1
2     a(t0) Δt2  =  1

2  
d2δ
dt2 (t0)     Δt2 (166) 

 
Encke's method is to derive the time variation of δ , assuming that the motion itself follows the osculating 
orbit, along which the perturbing terms are derived.  Inaccuracy enters because the values of a used are for 
locations slightly off the particle’s actual position, and similarly for other quantities which enter δ ; but 
because all these errors occur in small quantities, the error is of a higher order. 
 
  If δ/r becomes too big (> 0.01, one book suggests), the motion must be “rectified.” Using δ   at the given 
point, we obtain ( r,v) there, assume them to be the starting conditions of a new osculating orbit, and start 
again with a blank slate, i.e. with δ  = 0. 
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Subtract (2) from (1) at some arbitrary later time 
 

        
d2δ
dt2       =  

µ
ros

3     ros  −  
µ
r3     r +  a  

 

     =   
µ

ros
3     [ ros  −  

ros
3

r3      r]  + a 

 

     =   
µ

ros
3     [ (1 −  

ros
3

r3      )r  −  δ]  + a  (167) 

 
This is an ordinary differential equation (ODE), or rather a set of ODEs, determining δ .  It also contains 
ros(t), a known function, and r(t), not known but expressible as r = δ  + ros. One would have thought that 
we need eliminate r, but the textbook I used [Battin, 1968] actually eliminates ros: 
 
   ros =  r  − δ  

   ros
2  =  r2  +  δ .(δ  − 2r) 

   ros
2/r2 =  1  +  δ .(δ  − 2r)/r2  =  1 + q 

   ros
3/r3 =  (1 + q)3/2     (168) 

and from this 
   1 − ros

3/r3 =  1 − (1 + q)3/2  =  − f(q)  (169) 
 
If q is small (as it should be, since it's of the order of δ), then f(q) is also small, since it is the difference of 
two nearly identical terms.  Multiplying by a suitable factor 
 
 f(q) [(1+q)3/2 + 1]  =  (1 + q)3  − 1  = 3q + 3q2 + q3  =  q(3 + 3q + q2) 
hence 

    f(q)  =  q 
3+3q+q2

1 + (1+q)3/2       (170) 

 
which is clearly of order q, a function of q which need only be calculated once for all.  Equation (167) now 
becomes 
   

    
d2δ
dt2       =  

µ
ros

3  (f(q)r + δ)      +  a  (171) 

 
If a new variable is defined   u = dδ /dt, this breaks up into six equations (or two vectorial ones) of first 
order 

     
dδ
dt       =  u    (172a) 

 

     
du
dt       =  − 

µ
ros

3 (f(q)r + δ)      +  a (172b) 

 
The independent variable is time t, and ros depends on it. Let us follow the osculating orbit.  Then ros(t) is 
known, and we have a choice: either assume r ≈ ros, or else substitute  r = ros +δ  ; to lowest order in δ, 
both give the same equation, but the second approach also retains some second order terms and will 
therefore be the one used here. Then 
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  q  =  
δ .(δ  − 2r)

r2       =  − 
δ .(2ros + δ)
(ros + δ)2       =  

(2ros
.δ) + δ2

ros
2  + (2ros

.δ) + δ2
    )  (173) 

and (172) becomes 
 

     
dδ
dt       =  u     (174a) 

 

     
du
dt       =  − 

µ
ros

3     [f(q)ros + (1+f(q))δ]  +  a (174b) 

 
 
4.13 Runge-Kutta Integration 
 
  The methods used in integrating (174) were all taken from chapter 16 in  Numerical Recipes [Press et al., 
1992], a book which combines uncommonly lucid explanations with practical implementation codes.  At 
first various adaptations of the tried-and-tested Runge-Kutta method were used, and were tested by 
checking the long-term behavior of the semimajor axis a., which  is not supposed to vary. Since the semi-
major axis is a function of the energy, the constancy of a can be interpreted as the conservation of energy 
when all time-dependent perturbations depend on periodically varying parameters. However, it can also be 
shown formally. 
 
  Runge-Kutta failed that test--not badly, but still, it failed (a similar problem was noted by Mullins and 
Evans [1996]).  Then the method of Bulirsch and Stoer was tried, and it worked well.  Had it failed,, a third 
approach, predictor-corrector schemes, could have been tried. 
 
4.13.1      Runge-Kutta 
 
The Runge-Kutta method numerically advances in time the solution a set 
 

     
dy
dt       =  F(t,y)    (175) 

 
The vector y has 6 components, and we assume the first 3 are those of δ , the last 3 those of u. One can 
formally write 
 

    
dδ
dt       =  G = u     (176a) 

    
du
dt      =  H =  H(t,δ)    (176b) 

 
The function H(t,δ) is the right-hand side of (13b), with q also a function of t and δ . 
   The essence of Runge-Kutta methods is to advance by small steps Δt, but design the steps cleverly so as 
to minimize error (in a similar sense, Simpson’s rule is more clever than the trapezoidal rule). Perhaps the 
simplest member in the family of Runge-Kutta methods is the "Midpoint Method" which is important here 
because a slight modification of it, described below, plays a key role in the Bulirsch-Stoer method. 
 
4.13.2      Modified Midpoint Method   
 
Given a system of 1st order equations 
 

     
dy
dx      =  f(y)    (177) 

 
one can extrapolate it from x to x+2h by a simple Taylor term 
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   y(x+2h) = y(x) + 2h f(y(x))  + O(h2 )  (178) 
 
One gets a higher order approximation if instead of adding f at x we add f at the midpoint x+h (functions 
without stated arguments are all at the initial point x): 
 
 fi(y(x+h)) =  fi(y + Δy)  =    
 

         =  fi(y  + h f(y))  = fi(y) + h Σ 
fi

dyk
     fk   

         

        =  fi(y  + h f(y))  = fi(y) + h Σ 
fi

dyk
   

dyk
dx        

        

       =  fi(y  + h f(y))  = fi(y) + h Σ 
dfi
dx       

 

       =  fi(y  + h f(y))  = fi(y) + h Σ 
d2yi
dx2          (179) 

 
Substitute 
 

    yi(x) + 2h fi(y(x+h))  =  yi (x) + 2h fi(y) + 2h2 Σ 
d2yi
dx2        

 

     =  yi (x) + 2h  
dyi
dx       + 

1
2 (2h)    2 Σ 

d2yi
dx2        (180) 

which is correct to order h2. 
 
The modified midpoint method includes two small changes in this scheme, which actually make it less 
accurate, but (as will be seen) have their own reward: Start at x0  with y(x0) and let the step be h. Derive 
y(x+2h) to accuracy  h2 and y(x+h) only to order h (that is one modification): 
 
    y0  = y(x)      (181a) 
    y1   = y + hf(y)  (order h only) 
    y2   = y + hf(y1)  (order h2) 
Then leapfrog 
    y3  =  y1 + h f(y2)  (uses y1,y3 midpoint) 
    y4  =  y2 + h f(y3)  (uses y2,y4 midpoint) 
 
etc.  The last point again is modified. If n+1 is the last division (n segments of size h) then 

    y(x + nh)  = 
1
2  (yn  +  yn−1)       + 

1
2     f(yn)  (181b) 

 
4.13.3     "Classical" Runge-Kutta 
 
Let t → t + Δt. Then the "classical" RK prescription, accurate to order h4,  calls for the following 
intermediate vectors ki = (gi, hi), starting with 
 
  k1  = Δt F(t,y)  =  (g1, h1)  =   Δt (u, H(t,δ))  (182) 
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Initially, δ=0, u=0, so  k1 = (0, aΔt).  In later steps, if the same osculating orbit is used, the initial values of 
(δ ,u) are not in general zero, and k1 is less simple. 
The whole scheme (y means y(t)): 
 

 k1 = Δt F(t,y) 
 k2  = Δt F(t+Δt/2, y+k1/2)   
 k3 = Δt F(t+Δt/2, y+k2/2)  
 k4 = Δt F(t+Δt,     y+k3) 
and 

 y(t+Δt) = y(t)  + 
1
6     [k1 + k4 + 2(k2 + k3)]  (183) 

 
For instance, starting from (δ ,u) = (0,0), we have (as derived below (16)) 
 
 k1 =  (0, a(t)Δt)  =  (g1, h1)     (184a) 
 

 k2 = Δt F(t+
Δt
2     , y+

k1

2     )  =  Δt F(t+
Δt
2     , δ=0+

g1

2     , u=0+
h1

2     ) 

      =  Δt F(t+
Δt
2     ,  δ  = 0,  u = 

a(t)
2     Δt)    

     =  (a(t)
2      Δt2 , a(t+

Δt
2     )Δt)   =  (g2, h2)  (184b) 

 

 k3 = Δt F(t+
Δt
2     , y+

k2

2     )   =  Δt F(t+
Δt
2     , δ=0+

g2

2     , u=0+
h2

2     ) 

     =  Δt F(t+
Δt
2     ,  δ  = 

a(t)
4      Δt2,  u = 

1
2     a(t+

Δt
2     )Δt)    

    =  (1
2     a(t+

Δt
2     )Δt2, H((t+

Δt
2     ),

a(t)
4      Δt2)Δt)  =  (g3, h3) (184c) 

     
 k4  = F((t+Δt), y+k3)  =  Δt F(t+Δt, δ=0+g3, u=0+h3) 

    =  Δt F(t+Δt,  δ  =  
1
2     a(t+

Δt
2     )Δt2,  u =H((t+

Δt
2     ),

a(t)
4      Δt2)Δt)   

   =  (H((t+
Δt
2     ),

a(t)
4      Δt2)Δt2, H(t+Δt, 

1
2     a(t+

Δt
2     )Δt2)Δt) (184d) 

 
 Some of the terms are of order Δt2 or smaller, but that is because this is just the first step after initial values 
(0,0). In any case, this sort of substitution is easy for a computer. 
 
  The iteration continues along the same osculating orbit, “rectifying” and replacing it with a new one 
whenever δ/r exceeds some limit ε, say 0.01. When that happens, the last point derived becomes the new 
starting point. 
 
 
4.13.4      Runge-Kutta-Fehlberg 
 
  One big problem with the Runge-Kutta methos is the estimation of the actual error. One can conduct the 
integration with step h and with step h/2 and compare, but that is rather wasteful, since the result we can 
trust is only accurate top order h.  
 
  An different approach was introduced by Fehlberg, who found a 6-step Runge-Kutta procedure whose 
terms in one combination integrated the differential equations to an accuracy of order h5 and in another 
gave an accuracy of only order h4.  Can these two solutions be meaningfully compared to provide an error 
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estimate of the less-accurate one?  One may well be suspicious, since both use exactly the same terms, but 
in fact it was shown this is a perfectly acceptable way, and it is widely used today. 
 
  Numerical Recipes uses a scheme of this typs by Cash and Karp, and also provides the codes.  Their codes 
in addition use the error estimate to change the step-size h in the course of the calculation, increasing or 
reducing it to achieve a certain error range.  
 
  Unfortunately, the semi-major axis of the solution slowly changed, suggesting that the method was not 
accurate enough. Another Encke code, GRAVE, coded around 1985 by Roger Burrows at Marshall Space 
Flight Center, used Runge-Kutta integration, and it was applied by Mullins and Evans [1996] to plan orbits 
of the AXAF mission. Its semi-major axis also drifted, but its perigee variations were very close to those 
obtained with a non-drifting integration based on the method of Bulirsch and Stoer, as described below. 

 
4.14  The method of Bulirsch and Stoer 
 
The notes below are entirely based on chapters 3,4 and 16 of Numerical Recipes, and anyone interested in 
this approach is encouraged to consult that text.  Bulirsch-Stoer method resembles Romberg integration and 
both rely on polynomial interpolation, described below. 
 
4.14.1     Polynomial Interpolation (or extrapolation) 
 
Given points  xa(i),ya(i),  i=1,2...n, a unique polynomial P(x) of degree (n-1) exists which passes all the 
points (e.g. a straight line for n=2, parabola for n=3 etc.).  Polynomial interpolation is the process by which 
P(x) is found and its value at a particular x is derived. 
 
  A formula due to Laplace gives all the coefficients of P(x), but its expressions are rather long.  A easier 
way is to generate the coefficients is by recursion, using Neville's algorithm, which builds up P(x) 
gradually through polynomials of lower degrees. 
 
  A great advantage of the algorithm is that it can work in either of two ways.  We can build up the formula 
of P(x) through polynomials of lower degree, or we can build up the value of P(x) at a given value of x, 
given the values at x of the lower degree polynomials.  In the first case we handle formulas, in the 2nd only 
numbers. Here are the details: 
 
  Given points (x1,y1), (x2,y2) ... (xn,yn) one can define as  Pi(i+1)...(i+m) the polynomial of degree m that fits 
the m consecutive points  [i,(i+1), ...m]. 
 
  For instance: P1 = y1 = const. is a polynomial of degree zero which fits (x1, y1); P23 is the linear 
polynomial fitting (x2,y2) and (x3,y3). The final polynomial P(x) being sought can also be written P12...n . 
 
 Neville's recursion formula for Pi(i+1)...(i+m) involves two polynomials of degree (m-1), one of them 
missing (xi,yi), the other missing (x(i+m),y(i+m)): 
 
    Pi(i+1)...(i+m)(x)  = 

 

 =   
1

xi−x(i+m)
      [(x-x(i+m))Pi(i+1)...(i+m−1)(x) + (xi-x)P(i+1)...(i+m)(x)] 

 
 =    1

xi−x(i+m)
      [(x-x(i+m)) a + (xi-x)b]     (185) 

 
 The left-hand polynomial, by its definition on (on the right), is of degree m, and is supposed to give (yi, 
yi+1...ym) at all the corresponding values of x. 
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  Indeed, it does. For values of x other than those at the ends of the range, i.e. xi+1, ... x(i+m−1) , both a and 

b equal the appropriate yk, the terms xa and - xb cancel and we are left with just yk.  For x=xi, a = yi, and 
the term multiplying b is zero. For x=x(i+m) the same happens--a does not matter, b = y(i+m). We can thus 
start the recursion with order-zero polynomials Pi = yi and build up. 
 
A faster way is by defining "parent-daughter differences" 
 
    Cm,i(x)  =  Pi(i+1)...(i+m)(x) −  Pi(i+1)...(i+m−1)(x)     (lower parent)  

           (186) 
    Dm,i(x)  =  Pi(i+1)...(i+m)(x) − P(i+1)...(i+m)(x)          (upper parent) 

 
Then "Numerical Recipes" gives recursions  
 

  Cm+1,i  = 
(xi-x)(Cm,i+1 − Dm,i)

xi - xi+m+1
        Dm+1,i  = 

(xi+m+1-x)(Cm,i+1 − Dm,i)
xi - xi+m+1

      (187)  

 
  Using these, one only needs to trace one path from some chosen yi to get to the peak of the pyramid and 
obtain P(x). 
 
  Subroutine polint (xa,ya,n,z,y,dy) of Numerical Recipes generates the value P(x) at some given x for the 
interpolating polynomial of the above array of point, using recursion. The error estimate is dy. 
 
4.14.2     The Trapezoidal Rule  
 
  This is a rather simple scheme of numerically evaluating integrals, and is reviewed here only because it 
forms the foundation to Romberg integration, which in its turn has some similarities with the Bulirsh-Stoer 
method. 
 
  In this approximation, an integral s between given limits is estimated from a set of intermediate values, 
namely 

 s  =  ⌡⌠

a

b

f(x)     dx   ≈   h [ 
1
2     f(a) + f(a+h) + f(a+2h) .. + f(b-h) +  

1
2     f(b)] (188) 

   Subroutine trapzd (func,a,b,s,n) derives this approximation as output variable s, using 2n equally spaced 
segments. 
 
  Note that by choosing to divide into 2n segments, whenever one is forced to increase n, nothing is wasted, 
for all values of f(x) already calculated can be reused. In what follows such values (e.g. those in (4) above) 
will be denoted f0, f1... fn.  The error here is of order h2 . 
 

4.14.3      The Euler.McLaurin summation formula 
 
  Numerical Recipes next cites a "deep fact" about the trapezoidal rule, known as the Euler.McLaurin 
summation formula.  That formula states that not only is the difference between an integral and its 
trapezoidal approximation of order h2, but it can also be expanded in an asymptotic series all of whose 
terms are powers of h2, involving derivatives of odd degree of f(x) at the end points:   

  ⌡⌠

a

b

f(x)     dx  − h [ 
1
2     f0 + f1 + ...  +  

1
2     fn]  = 

B2h2

2!  (fn' − f1')     + 
B4h4

6!  (fn(3) − f1(3))      + ... 

                       ... + 
B2kh2k

(2K)!  (fn(2k−1) − f1(2k−1))      (189)     
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The coefficients are the Bernoulli numbers  
 
 B0 = 1    B2 = 1/6    B4 = − 1/30    B6  = 1/42   B8 = − 1/30 ... 
 
generated by 

     
t

et−1
      =  Σ Bn 

tn

n!        (190) 

 

  From B8 the terms grow larger again, without any limit, which is why the series (189) does not actually 
converge.  But it is asymptotic, i.e. the error generated by truncating it is always less than twice the 
magnitude of the first neglected term. 
 
  Using the above series for (n) and (2n), one can eliminate the h2  term and get an approximation to s which 
has only an h4 error.  The result is, in fact, Simpson's rule. 
 
4.14.4     Romberg Integration  
 
Romberg's method of evaluating integrals is an application of "Richardson's deferred approach to the limit." 
Suppose we derive a quantity s by a method involving a small parameter h; Richardon's prescription is to 
carry out successive approximations s1, s2, ... sn  for a series of values  h1, h2... hn, fit them to an analytic 
function s(h), then extrapolate s(h) to the limit s(0), 
 
Romberg integration does this, using the trapezoidal rule (4) 

 s(h)  =  ⌡⌠

a

b

f(x)     dx   ≈   h [ 
1
2     f(a) + f(a+h) + f(a+2h) .. + f(b-h) +  

1
2     f(b)]  

  Given approximations s(hk) for hk = (b − a)/2k, the method fits to s(h) a polynomial of appropriate degree 
and extrapolates it to h=0. 
 
  There exists a twist, however: by the Euler-McLaurin formula we expect the polynomial to 
contain only even powers of y. So properly, the parameter on which s depends is not h but h2, or if we 
wish, g = Ah2, with some convenient value of the constant A. We then derive as before values of s1, s2,... sn 
appropriate to g1, g2... gn, fit the paired values to a polynomial s(g), and as before, the optimal value is then 
obtained at g=0.  The value of A is arbitrary, so we take g1 = 1, g2 = 1/4  ... gj+1 = 0.25 gj .  
 
     Subroutine qromb (func,a,b,s) on p. 134 carries this out.  It derives the sk for the values of gk derived 
above (the book denotes them by hi). Past a certain K = KM (here KM = 4) it also calls subroutine polint to 
provide a polynomial approximation Pk(g). It then derives the approximation ssk= Pk(0), and the error 
estimate dss = ssk+1 − ssk. It stops when dss falls below some previously chosen criterion EPS. 
 
4.14. 5    The Modified Midpoint Method  
 
 The Bulirsch-Stoer integration applies the above approach to the solution of a system of coupled 
differential equations. As before, a sophisticated approximation to the solution is obtained, by extrapolating 
a series of simple approximations, depending on a small parameter h (or more accurately, on h2) to its limit 
at h = 0.  
 
   The simple approximations in this case (analogous to the trapezoidal rule), is produced by the 
modified midpoint method, already described earlier. Given a set of equations 

     
dy
dx      =  f(x,y)     (191) 
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this method advances the solution from x to x+H (H need not be small) in n steps of h = H/n each, by 
defining a sequence 
 
   z0 = y(x) 
   z1 = z0  +  h f(x,z0) 
   z2  = z0  + 2h f(x+h,z1)     (192a) 
   z3  = z1  + 2h f(x+2h,z2) 
   ....    ....       .......... 
   zk+1  = zk−1  + 2h f(x+kh,zm) 
and finally  

          y(x+H) ≈  yn  =  
1
2     [zn + zn−1 + hf(x+H,zn)]   (192b) 

 
The midpoint method was described earlier, but here the first and last points are modified.  A subroutine is 
provided to implement this method,  
 
 mmid (y,dydx,nvar,xs,htot,nstep,yout,derivs),  
 
with nvar the number of variables, xs the starting value of x, (xs+htot) the final value (i.e. htot=H), nstep 
the number of substeps to be made and yout the output values: one may write y in this position, in which 
case the output overwrites the input. Subroutine derivs provides the vector f(x,y). 
 
The reason for the modification is that (as Gragg had shown) the error then (again) depends only on h2 and 
can be approximated by a polynomial containing only even powers: 
 

     yn − y(x+H) = Σ αi h2i   (193) 
 
   As before, one can combine here approximations of order n and 2n and get one in which no h2 term 
appears. In this case 
 

     y(x+h) ≈ 
1
3 (4y2n − yn)       (194) 

 
As with Romberg integration, this result is related to Simpson's rule. 
 
4.14.6      The Bulirsch-Stoer Method 
 
  The Bulirsch-Stoer algorithm is the method of choice for advancing in time differential equations ehich 
involve smooth functions, while RK is a better choice for functions with corners or singularities. The 
authors also feel it is superior to predictor-corrector methods (described later).  It is based on three ideas: 
 (1) Richardson's deferred approach to the limit, i.e. extrapolation to 
  h=0. 
 (2) Rational approximation, i.e. representation as the ratio of two 
  polynomials, which "breaks the shackles of power series."   However, the 
authors here have found that for smooth problems  
  polynomials often work better; this is adopted here, although a  
  subroutine rzextr is provided for the other way. 
 (3) The use of expansions whose error depends only on h2, producing a  
  faster approach to the solution. 
 
  The Bulirsch-Stoer method advances the solution of  
 

      
dy
dx      =  f(x,y)    (191) 
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by the modified midpoint method over a "macrostep H", divided and redivided into "dozens to hundreds" 
of smaller "microsteps" h1, h2...hn. This gives a series of approximations y1, y2 ... for y(x+H), which is 
extrapolated to h= 0, or more accurately to g = Ah2 = 0.  
 
  The number nj of segments into which the range is divided in the jth step is not doubled each step, but 
grows more slowly. Bulirsch and Stoer proposed a modified doubling (nj doubles every two steps) 
 
   n = 2,4,6,8,12,16,24, 32 ...  nj = 2nj−2  (195a) 

 
which alternates two doubling sequences, 2,4,8,16,32.. and 6,12,24,48,... Deuflhard (1983, 1985) suggested 
instead   
 
   n = 2,4,6,8,10,12,14,16 ...   nj = 2j  (195b) 
 
which is usually more efficient.  The big question is choosing the right H: too small is an inefficient use of 
a powerful method, too big and the method does not converge.  The rule adopted here is to proceed 8 steps, 
to  n=16, and if the error does not seem to shrink, go to a smaller H, 
 
Numerical Recipes goes into some details of how this choice of H works, and also provides a subroutine 
 
 bsstep (y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)  
 
which calls mmid (above) and either pzextr for polynomial extrapolation, or rzextr for rational function 
extrapolation. It is configured so that it can replace in subroutine odeint a subroutine rkqs  which advances 
step by step using the Runge-Kutta method. 
 
 As before, nv is the number of variables, htry is the initial step size, yscal is vector against which 
Δy = yerr is scaled (in the DO 16 loop), hdid is the step actually used and hnext the estimated next stepsize, 
which should become htry of the Bulirsch-Stoer code for the next step. 
 
4.16.7   Multistep (MS), Multivalue (MV) and  
  Predictor-Corrector (PC)       
              
MS and MV methods are two equivalent ways of implementing a specific technique for solving ODEs. The 
"predictor-corrector" (PC) method is the most popular one of this type, so often all such methods are 
referred to as "predictor-corrector". They are best for high-precision work with very smooth equations, but 
"bookkeeping details are the bane." 
 
   In RK or BS, a single step x → x+h or x → x+H is subdivided and advanced. In multistep methods the 
combined record of several past points is involved in each advance.  Suppose the equations to be solved are 
 

     
dy
dx      = f(x,y)     (196) 

 
The solution has reached yn and must now be advanced to yn+1. Formally  

    yn+1 =  yn  +  ⌡⌠

yn

yn+1

 f(x,y) dx        (197) 

 and one might approximate it by a Taylor expansion 

    yn+1 =  yn  +  h f(yn,x)    (198) 

 A better approximation would be  
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    yn+1 =  yn  +  
1
2     h [ f(yn+1,x) + f(yn,x)]  (199) 

where yn on the right-hand side is taken from the approximation (198). 
 That however is very crude.  The general PC method therefore replaces (199) by 
  yn+1 =  yn  + h[β0fn+1 + β1fn + β2fn−1 + β3fn−2 + ...]  (200) 
 
To predict yn+1 on the right of (18) we extrapolate it from earlier values of y using some polynomial 
scheme. A popular scheme is the Adams-Moulton-Bashford method; Adams and Moulton were 
astronomers, suggesting this method was widely applied to the integration of orbits, and Danby [1992] 
describes such uses in section 10.7. The 3rd order equations have a predictor 

   yn+1 =  yn  + 
h

12     [23 fn − 16 fn−1 + 5 fn−2]  + O(h4) (201a) 

and the corrector 

   yn+1 =  yn  +  
h

12     [5 fn+1 + 8 fn − fn−1]    (201b) 

 
  Note that in each case the coefficients add up to 12, just as in (199) they add up to 2, since these are all 
improvements on the crude (198).  The authors recommend against repeated iteration, which only gives 
marginal improvement. Higher orders PC schemes also exist.  
 
4.15 Derivation of the Perturbed Orbit 
 
4.15.1     The ENCKE code 
 
  A Fortran code ENCKE was produced to integrate the equations of Encke.s method. The code contained 
three sections: input, integration and output. 
 
  The input section read the starting conditions, either from a data file or from the keyboard.  These 
included starting date, the length of the run and starting conditions, presented in one of three ways: (1) 
entry time into parking orbit, exit condition from that orbit and velocity at exit, or (2) initial time and 
(r0,v0), or (3) initial time and osculating elements. This section also included various preparatory steps, e.g. 
the preparation of an initial array of positions of the Moon and the Sun. 
 
  The basic output was a file containing all sets of osculating elements derived for the motion, each with the 
elapsed time at which it became effective. That information allowed the reconstruction of (r,v) for any time 
t covered by the calculation, as soon as the set of elements appropriate for that time was located, which 
only required a binary search.  For instance, given two such sequences for two satellites initially on the 
same orbit but passing perigee one hour apart, these data make it possible to track the changes in their 
separation throughout the period covered by them. 
 
  The main problem with this output was its size, since typically osculating elements were switched once a 
day.  A second output, more manageable and short enough to be scanned by eye, was therefore provided on 
the standard output file, which also recorded various initial parameters. That output listed time, perigee 
distance, semi-major axis, eccentricity, inclinations to the equator and ecliptic, the angles χ1 and χ2, etc. 
The entries of that list was separated by uneven intervals, always longer than some specified lingth t1, e.g. 
30 or 60 days.  After a set of output parameters was listed (and this was always done for the initial time 
t=0), the code waited a time t1, after which the wait continued until the next set of osculating elements was 
produced, and that set gave the output next on the list. 
 
 
  The integration section was the longest part of the code and was handled entirely by subroutines. The link 
between them and ENCKE was through ODEINT (Ordinary Differential Equations INTegration), adapted 
from Numerical Recipes.  It was written in a way suitable for either the Runge-Kutta subroutine RKQS or 
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the Bulirsch-Stoer subroutine BSSTEP, both of which were supplied by the book, as were the subroutines 
required by them. Some details of these algorithms and codes are given in Appendix C. 
 
  Either method works with the 6 equations (    ), whose time derivatives depend on the preceding values of 
(δ , u), the osculating orbit and the time t.  The first 3 equations 

     
dδ
dt       =  u    (176a) 

 
are trivial, since the preceding u is known explicitely. However, the other three 

     
du
dt       =   a  +   etc.   (176b) 

 
require rosc, the position at time t in the osculating orbit, as well as the perturbing acceleration a, for which 
the positions of the Sun and Moon must be provided. 
 
  All that is handled by subroutine DERIVS, which is the core of the calculation. It also handles the 
derivation of new osculating elements (“rectification” of the variables) whenever it is needed. Both with 
Runge-Kutta and Bulirsch-Stoer, DERIVS is called several times in each step (more in Bulirsch-Stoer, 
where “macrosteps” are larger), and those intermediate times are obviously not appropriate for testing δ 
and possibly introducing new elements. The subroutine is however also called once at the beginning of 
each step by ODEINT itself, and that is where the test is performed. If δ is large enough to make the 
osculating orbit further away from the true one than what has been allowed, the current values of (δ ,u) are 
added to the osculating (rosc,vosc) to give the perturbed (r,v), new elements are derived from the new 
perturbed values and (δ ,u) are reset to zero. 
 
  Whenever the orbit is thus “rectified” the new elements are passed to ODEINT, which stores them in 
arrays later passed to the output. All sorts of small modifications exist here, e.g. rectification was postponed 
when it was demanded close to perigee (see further below), and it was enforced automatically if it failed to 
occur within a preset time interval after the preceding rectification. 
 
  In any numerical calculation, an independent check on the accuracy of the result is always valuable. In 
celestial mechanics, in the presence of purely periodic perturbations, the semi-major axis may fluctuate but 
its average value should stay fixed. With the Runge-Kutta method, it slowly drifted; the drift rate could be 
reduced by forcing smaller steps, but it was always present. After that the Bulirsch-Stoer method was 
substituted, and ultimately it passed the test. 
 
  At first, however, the codes of Numerical Recipes ran into a problem.  For both integration schemes, they 
adjusted their step size to meet certain error bounds, using their internal error estimates. Whenever a new 
set of osculating elements was introduced, the process started anew, beginning with an extremely small step 
size. However, the procedure then did not converge in an orderly way to the appropriate macrostep 
(typically 10 hours), possibly because initially the osculating orbit and the real one were extremely close. 
“Priming the pump” with steps of 1-10 seconds eliminated the problem. 
 
 
 4.15.2      The periodic variation of the semi-major axis 
 
  When the program finally ran, the semi-major axis a seemed stable, but a strange feature was noted.  Its 
value seemed to fluctuate appreciably, giving the plot of a against time an appreciable thickness, on which 
short “hairs” were randomly superimposed. At the same time it was noted that the initial osculating value 
of a, at t=0, was abnormally high: it seemed as if a had slumped during the first few minutes of the orbit 
and afterwards varied only randomly, by smaller amounts. 
 
  The feature was traced to the oblateness of the Earth and when oblateness terms in a were switched off, it 
disappeared. Because motion in the field of the oblate Earth departs from a Kepler ellipse, its osculating 
semi-major axis varies periodically around the orbit. Like the attraction of the equatorial bulge, the effect 
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peaked near perigee and quickly subsided at greater distances.  The peak in a observed at t=0 was thus a 
periodic affair, associated with the perigee pass (the orbit was always started at perigee) and not with the 
beginning of the calculation.  Similar peaks were observed at other perigee passes, but since the main effect 
was only noted 20 minutes from perigee, they were rarely encountered by chance at later passes and the 
code had to be modified (by forced rectifications near perigee) to make them visible.  For this reason, too, 
the random fluctuation of a dropped when rectifications were postponed when ever they were called for 
within 2 hours of a perigee pass (which covered about 8% of the orbit).  
 
  The periodical variation of a due to the Earth’s bulge also produced a problem when a code ENCKE12 
was developed from ENCKE, tracking for one year 12 satellites in the same initial orbit; the 1-year time-
span was chosen. because the outputs were then to be analyzed for magnetospheric coverage, shadows and 
the occurence of specific constellations, the way Keplerian orbits were handled at an earlier stage. 
 
 It is worth noting that when the perturbation due to the Earth’s oblateness was removed, the semi-major 
axis stayed nearly constant even when Runge-Kutta integration was used.  Thus this effect may also be 
implicated in the problems attending the use of the Runge-Kutta method. 
 
   Because the initial orbit was the same, it was expected that all satellites could be started with the same 
osculating elements (a, e, i, ω, Ω), but with the mean anoaly l separated by fixed amounts--e.g. separations 
of 2π/T radians, with T the orbital period in hours, would cause the satellites to pass perigee one hour apart. 
When this was put into practice, however, it turned out that small differences existed then in the orbital 
periods, causing the relative positions of satellites to drift, in a few cases even causing satellites to overtake 
each other. 
 
  This too was caused by the periodic variation of a. In strict Keplerian motion, T is a function of a 
(Kepler’s third law) and should therefore be the same for all satellites. Due to the equatorial bulge, 
however, osculating a varied systematically around the orbit. Orbits with the same a at perigee and the 
same perigee distance then still have the same T, but the actual orbits had different values of a at perigee, 
because their initial values of a were specified to be equal at some other points in their orbits, and these 
points differed for each satellite. 
 
4.15.3    ENCKE12A and ORB7 
 
  To overcome this problem, a variant code ENCKE12A was produced, specifying as initial condition not 
the orbital elements of each satellite, but only those of the “bus” releasing the satellites at consecutive 
perigee passes, as well as the value of Δv imparted at release.  One great advantage of this approach was 
that the effects of a “centrifugal slingshot” release were readily incorporated, by assuming the satellites 
were released two at a time, with velocity increments ±Δv. For simplicity, the orbit of the “bus” was 
assumed to be purely Keplerian: because all releases were at perigee, where the “bus” orbit originally 
began, the injection velocities were unaffected.  However, the small difference between the orbital period 
of the Keplerian motion and the one with the bulge present were not taken into account. The difference 
made b y this is small, because within 5 periods of the “bus” all releases are complete. 
 
  In either 12-satellite code ODEINT is called separately to integrate the orbit of each satellite, up to some 
final time tF. When the run is complete, ODEINT always provides the final values of (δ ,u), and adding 
these to the final osculating (rosc,vosc)  produces the final (r,v).  These can then be saved in a separate 
output file (together with the time and other details) to serve as starting conditions for the call of ENCKE12 
for the next year, either explicitely as written above or implicitely through the starting values of the 
osculating elements (a, e, l0, i, ω, Ω), which convey the same information. 
 
  ENCKE12A was intended to be no more than an initializing code, covering a short period (e.g. 2 weeks), 
after which all satellites are in orbit, with their simultaneous positions at the end of the period specified. 
After that ENCKE12 was called for one year at a time, and its output files served as input to ORB7, a code 
resembling ORB5 or ORB6, providing statistics of annual coverage of various magnetospheric regions and 
of shadows and constellations. ORB7 differed from earlier codes in that for each hour covered, the actual 
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position of each satellite must be calculated, not merely permuted among a small number of pre-calculated 
locations.  In ORB7 that is accomplished rather quickly, using the tabulated sets of osculating element for 
each satellite. In a given hour, those values are usually either the same as the one used the preceding hour, 
or those of the next set in the tabulation, so that a long search for the appropriate set is usually not needed. 
 
4.16  The Perturbed Orbit  (tentative) 
 
(This section will describe results learned from the application of the codes. Some things have not yet been 
tested, and even where results exist, I have run too few orbits and should get a good sample to confirm the 
conclusions) 
 
 
4.16.1   Perigee height 
  The perigee height of the perturbed orbit changes on two characteristic time scales--a semi-annual 
oscillation of typical peak-to-peak amplitude of 500 km and a long-term variation with typical period of 5-9 
years, both of these reflecting corresponding oscillations in the orbital eccentricity. 
 
  Such behavior was found by Mullins and Evans  [1996] who used the Encke code GRAVE for a 50-year 
span of a sample AXAF orbit (Figure 3, loc.cit.). They found a growing oscillation in eccentricity and 
perigee altitude, apparently ultimately causing the perigee to enter the atmosphere after some decades and 
the satellite to decay. The perigee variation was duplicated by ENCKE. It did not however yield the drift of 
a shown in the published article, which was probably a spurious effect due to the use of the Runge-Kutta 
method.  Such long-term behavior (is typical)(is not typical). 
 
  Presumably it is desirable to inject the “Profile” bus at the lowest perigee possible, since raising perigee 
requires either more fuel or a lighter payload. A good strategy seems to be to choose some initial (ω,Ω) 
based on expected (initial) magnetospheric coverage, calculate the orbit for launch at some appropriate time 
and then shift the launch date to fit the minimum time of the semi-annual oscillation in perigee height. Such 
a shift will make perigee height rise after launch, whereas a launch near the top of the cycle would be 
followed by a drop, probably reducing the orbital lifetime. 
 
(the following is just a guess and must be demonstrated!) 
 
  On a longer time scale, it helps to locate the minima of the long-term oscillations and launch then.  
Because of the synergy between “Profile” and almost any other magnetospheric mission, it is highly 
desirable to have the mission last as long as possible. In practice, a lifetime of the order of 10 years is 
probably a reasonable goal: in comparison ISEE 1/2, launched with perigee (give value) km, lasted about 
8.5 years (check).  
 
Then:  Results of tests. 
 Variability of spacing between satellites. 
 Variations of ie, χ1, χ2 etc. 
 Some sample missions, with coverage figures. 
 
 


