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4. Celestial Mechanics

4.1 Kepler’s Laws

Given a two-body problem--the Earth around the Sun, or a satellite around the Earth, with other factors
neglected--one can easily show that the satellite moves around the source of attraction (or more accurately,
around the center of mass of the two bodies) in an ellipse, with the center at one focus. That is Kepler’s
first law, published in 1609 and based on naked-eye observations of Mars by Tycho de Brahe. The second
law (“law of areas”) describes the way the motion of a satellite or a planet accelerates as it approaches the
center of attraction: the “radius vector” connecting it to the center sweeps equal areas in equal times. The
third law (1619) states that the square of the orbital period is proportional to the cube of the mean distance.

The laws themselves are derived relatively easily (below), but the full solution of the orbital motion is a
bit more involved.

4.1.1 The first and second law

Let m; be the mass of the Earth and m, of the satellite (or of Sun and Earth, respectively), and let (ry, r,)
be their positions in some arbitrary system of coordinates. The attraction between the two will be along the
vectorr =
r, — r; from the center of the Earth to the satellite, always directed towards the other body. From Newton’s
law

d2r1 Gm1m2
m; dt2 +

5 (m-r) =0
(3)
d2r2 Gm1m2
m, ? +

5 (@T-r) =0

where G is the constant of gravitation. Cancel m; in the first equation, m, in the second, and subtract. If we
then define

w = G(m; +my) =Gmy
then
d?r w

i +r_3 r =0 9

The cross-product with r gives the conservation of angular momentum

d?r d?r dr dr d ,dr
d? xr=02(¥ xr)+ it S =a(aoor) (10)
hence
dr
h = LT const. (11)

This is really the law of areas, since h = | h| is the area swept by the radius vector per unit time. The fact
the vector h is conserved shows that the motion stays in the same plane, normal to h.

The value of w is readily derived by noting that at the surface of the Earth, r - Rg, the acceleration due to
gravity is g. Then

Gm u
Rz ¢ TRZ (12)




Cross-multiply (2) by h

d?r

ar dr
dt? t

u n
xh = —r—3(rooh) = -3 rx(rxd— )

_u dr

u dr
= -5 [rGy )-2g

1= g
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Since dh/dt = 0, the left-hand side of (13) is d/dt [dr/dt x h], allowing one to integrate (11) to

dr

at x h =

I
" (r +re)

with e a constant vector. Create the scalar product with r
dr

re (g

with f'the angle between e and r. From this the motion follows an ellipse

—pP

r= 1 +ecosf

with “parameter” (or semi-latus rectum) p

p = h¥/u

x h) = (rx% ) h = h%= ur + urecosf

(13)
(14a)
(14b)
(15)
(16)

The angle f is called the true anomaly of the satellite. Since r is smallest when f=0, the angle f is the one
between r and the major axis of the ellipse, measured from perigee, the point of closest approach between
the satellite and the Earth. Let (ry, r,) be the distances of (perigee, apogee), at which cos f=(-1,1). Then

I = I'z—l_e

1+e

The semi-major axis « is half the sum of the distances to the two foci. Hence

_htn o _p 1 1 __b
2= =2 () Tise
from which
p = a(l -¢?) (18)
4.1.2 Energy
The conservation of energy follows from multiplying (2) with dr/dt=v
e dr (ﬂ
dt de2 T2 Vdae”
or
ld o _ wwd o _ pd _ dup
2at™ T ™ Tew T a
Hence
2
V-5 = const = W (19)
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For any compact object of mass m moving in the gravitational field, mW/2 is the total energy. If that
object can reach infinity with a finite velocity, its kinetic energy there obviously equalt mW/2, which
means W is positive. For a gravitationally bound object, however, W is negative.

4.1.3 Kepler’s Third Law

The second law states that the areal velocity--the rate at which the radius vector sweeps area--is constant.
For if v is resolved into orthogonal components in polar coordinates r and 8 (0 = f)

i—f —v=r v +6 vy (20)
then
A
h=rxv=¢ r1vg (21)

and by simple geom etry, h/2 =r vg/2 is the areal velocity. In a full period T the total area 4 of the ellipse
is swept, hence

% hT =4 =mnab (22)

where a is the semi-major axis and b the semi-minor one.

In the drawing, b = AC. Since the sum of distances of any point
on the ellipse from the two foci (B,B’) is 2a, AB = a. By (18),
with (15), the perigee distance is

BD_a(l_‘ez) a1
T l+e = a(l-e)

and since CD = a, CB = ae. Then by Pythagoras

b = AC = a(l - ¢e?)'2 (23)
By (16) and (18)

h?=a(l-e)u (24)
Squaring (22) and substituting

i au(l-¢€?) T2 = n?a2(1-¢?)

giving finally
T2 = (4n¥/) a3 (25)

which is Kepler’s 3rd law. Using (2), eq. (25) may be rewritten

T? = (4n® Ry /g) (a/Rg)? (26)
Inserting the constants:
Tgec = 5063.48 (a/Rg)>? 27

4.2 Two-body motion in the orbital plane

As stated, the true anomaly fis the polar angle around the center of attraction, and by (15) and (18)
a(l - ¢?)

r= l+ecosf

(28)

The angle f'does not vary uniformly, however. The way it varies is implicit in the law of areas
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h = rzg{ = constant (29)

but isolating it from there is a bit involved.

The calculation below traces the connection between fand the mean anomaly /, an angle increasing like f
by 2m each orbit but linear in time. The derivation of / traditionally uses an intermediate angle, the
eccentric anomaly £ which also grows by 2x each orbit. The relation between / and E involves a
transcendental equation, named after Kepler, and that between £ and f'is not simple, either.

4.2.1 The Eccentric Anomaly

Unlike f, measured around the focus occupied
by the center of attraction, the angle E is mea-
sured around the center C of the ellipse, the
point halfway between the foci, and that is proba-
bly the reason for the name. Let a circle of radius
a be drawn around C, enclosing the ellipse.

Then E is the angle between the major axis of
the ellipse, also taken as the x-axis, and the
radius to B, the projection of the satellite onto the
circle, i.e. the point there having the same x as
the satelite. Let:

O be the center of attraction

A the satellite’s projection on the x-axis
P the satellite position B its projection on the circle, with same x.
C the center of the circle (& ellipse) D the perigee point

Then OP =r is the radius vector and

AO=x=rcosf (30a)
By (28)
eAO=ercosf = a(l -é?) -r (30b)
At perigee cos =1 and by (28) the radius vector is
OD=a(l -¢) (30c)
hence OC=CD-0OD =a - a(l-e) =ae (30d)

Also, because the radius of the circle centered at C is a

AC =acosE (30e)
eAC =eacosE = e(CO+AO) = e?a +a(l-¢e?) -t =a-r 31
giving
r = a(l — e coskE) (32)
Equating this to
a(l - ¢?)
T 1+e cos f (28)

allows cos E to be related to cos f:

l-ecosE = (1-e?)/(1 +ecosf) (33)



cos E = (e+cosf)/(1+ecosf)
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A more symmetric form is reached as follows. Eliminating the denominator in (34)

cos E (1 +ecosf) etcosf
Add (1 + e cosf) to both sides

(1 +cosE)(1+ecosf) = (e+cosf)+(l+ecosf)

(1 +e)(1 +cosf)
Subtract (1 + e cosf)

(1-cosE)(1+ecosf) = —(e+tcosf)+ (1 +ecosf) = (1-e)(l - cosf)
Divide:

1 — cosE

1 + cosE

_1-e 1-cosf
" 1+e 1+cosf

However, for any 0 an identity exists

<] B [ 1 - cosO 12
tany a 1+ cosB
hence
E 1-¢ 12 f
tan E = [ m ] tan 5

For a result useful later, instead of dividing egs. (36) by each other, multiply them:

sin?E (1 + e cosf)? = (1-€?)sin?f
Then using (28)
sinE = (r/a) (1-e*)~"2 sinf’

4.2.2 The Mean Anomaly

The dependence of f on t is given by the law of areas, using (16), (18) and (21):

r2§{ = h= [ua(1-e))]"2

Now from (39)
log tan (£/2) = log tan (f/2) + const

and an identity exists (useful in integrating 1/sinf)

d 01
o MM T ing
Thus the time derivative of (43) is
&1 _dE _1
dt sinf dt sinE
With (41)
& _dE a 21172
dt  dt r [1-e7]

Multiplying by r?, applying (42) and canceling constants

(34)
(35)
(36a)
(36b)
(37)
(33)
(39)
(40)
41)
(42)
(43)
(44)
(45)
(46)
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dE [E ]1/2

va L @)
We may express r by

r=a(l-ecoskE) (32)
to get

d . u 12

i (E —esinE) = [a3 ] (43)
A new constant may now be defined

w 12
=5 ] (49)

and (48) can be integrated to
E —esin E =n(t - ty) (50)

This is Kepler’s equation. As E grows from 0 to 2mx, the lhs also grows from 0 to 2mwt, hence it will be
identified with the mean anomaly

| =FE -esinE (28]
If T is the period

nT =2xn (52)
and by (49)

T%/a® = 4a?/u = const. (53)

This is Kepler’s 3rd law, derived earlier from the law of areas.

4.3 The Position of a Satellite in its orbital Plane

4.3.1 Given the Orbital Elements

Suppose we know the orbital elements (a,e,/y) at a time t=0, and need to find the position r of the satellite
and its velocity v in the (§,1,C) frame. at some other time t. At that time, the mean anomaly is

[ =1+ nt (54)
and the eccentric anomaly satisfies
E —esinE =/ (51)
This can be solved numerically for £ (see below). After that f could be obtained from
E 1-e 12 f
tan2 = [1+e ] tan2 39)
but it may be simpler to use
r = a(l — e coskE) (32)
to derive r. Then from (28)
1 a(1-¢?
cosf=€ [% —1] (55)

From this sinf'is obtained, its sign depending on whether £ is in the range (0,7) or (5t,27), since f* should be
in that range too. Then

E = rcosf n = rsinf (56)
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and of course T = 0, since the satellite is always in its own orbital plane. Later, after the other orbital
elements (i, w, Q) are introduced, it will also be possible to relate (&,m,C) to other coordinate systems, tied to
the Earth and the Sun.

Kepler’s equation is easily solved by Newton’s method, a general iteration procedure. Suppose a solution
is needed for a transcendental or high-order equation

f(x)=0 (57a)

and we know that x, is reasonably close to the solution. By Taylor expansion

df(xq)
dx

fixo +d) = f(xg) + d (57b)

Suppose (X, + d) is a better solution, so that f(x,+d) is closer to zero. Equating it to zero gives

fx0)

4= - Jxg)dx

(57¢)

That can be repeated until f(xy+d) is close enough to zero. In Kepler’s equation x is replaced by £ and

f(F) =1 - E+esinE =0 (58a)
df
dE = —1-ecosE (58b)

Let E, be an approximation. Then E,td is a better one if

_ [ - E() +e Sil’lE()
d =3 e cosk, (59)

The iteration could well start from E, =/, but a closer guess is obtained by substituting this in Kepler’s
equation to get

Ey=1 +esin/ (60)
The iteration converges very rapidly and 3-5 steps give excellent precision. Other methods of solving the

equations are given by Danby [1988], section 6.6.
The derivation of v starts with

A A
r =rcosf& + rsinfn (61)
Differentiate to get v = %
d A f A
v = d—lt“ [cosfE + sinfm ] +r% [-sin f€ + cosfm ] (62)

Now from the law of areas (29) and the ellipse (15)

df

h h
'y — 7 - [5 ] (1+ e cosf) (63a)
Also, differentiating (15) and substituting (29)
dr .. df e sin df ch .
@ = (1_+eEOSW e smfa = —pf rza = ? sin f (63b)
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So
h h N
v = % sinf[cosfé + sinfrA] ] +[E ](1 +ecosf) [-sinfE  + cos fﬁ ] =

= [% ] [é sin f[e cos f = (1+¢ cos f)] + TA] [e sin?f + cos f(1 + e cosf)]]
or
v = [% ] [-sinff + (etcosHn ] (64)

Both h and p depend on the orbit, but using (16), one of them can be eliminated, e.g.
hp = (wp)'? (65)

4.3.2 Historical side excursion: Bessel functions

Bessel functions are named for an astronomer, not a mathematician. Friedrich Bessel lived in Germany in
the early 1800s and devoted much of his career to accurate measurements of the positions of stars. His
great discovery came in 1838, when he showed that during the year the position of one particular star
shifted back and forth relative to its more distant neighbors, by a tiny amount, because the Earth viewed it
from slightly different directions. That provided the first baseline for estimating the distances to the stars.

In 1824 (following earlier work in 1817) Bessel tried to solve Kepler’s equation by a Fourier series:

E=1+ 2, asinkl (66)

In deriving this series for different orbits, the coefficients ay will depend on the eccentricity e, but not on

the semi-major axis @, because @ has dimensions of length. In an equation for angles, a cannot appear
alone, but only in the ratio to another length, and the equations contain no other quantity of that dimension.

As in the usual derivation of Fourier series, shift / to the left, multiply by sin(n/) and integrate from 0 to &

TT T ' . -
f (E-1) sinnldl =2 ay f sinkl sinnldl =5 ap
0 0
The last equality holds because all right-hand integrals vanish unless k = n.
The integral on the left can be modified by integration by parts:

T

T
. 1 T 1 dE

Je-n smmiar =~ |@-peosnt; -+~ f(ﬁ- 1) cosnldl

0 0

At!/=0,t, (E-1)=0 and the first term vanishes, also [ cosn/ dl = (I1/n) sinnl vanishes at the limits. Thus

if | = I(E)

TT
1
;fcosnl dE = an

0

A

Substituting Kepler’s equation
T
2 2
ap(e) = o fcosn(E —esinE)dE = o
0

Jn(en) (67)

That was how Bessel originally defined the Bessel function J,. The definition looks unconventional, but

Bessel’s differential equation and series hold. See Special Functions of Mathematical Physics and
Chemistry [Sneddon, 1961].

4.3.3  Given Initial Conditions
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Often the orbital elements are not given, and instead one has the initial position r, (in celestial

coordinates) at t=0, and the initial velocity vy.

To derive from this the first three orbital elements a, e, /, at t=0, the following method (following Battin

[1968]) can be used. Start from

Also, from (63b) and (16)

Since

the lhs of (68) can be expressed:

Hence

and also from (15), above

Squaring and adding given the equation for e

h = Iy X Vg
dfy
h = ry? s
r _p
07 1+ecosf)
dro cu .
at h sinfy
_dra o dO
V=" Tdt
dry eury .
(Voro) =t g = Tp sinfy

. h
eusinfy = T (Vo'ro)

once e is known, a can be derived, using (16) and (18)

Finally, (32) may be used to obtain cos Ey:

=%

h2
ewcosfy =~  -u
0
h \2 h2 2
= () ooro? + (- - )
= a(l-¢)

190 = a (1l —ecosEy)

(1D

(29)

(15)

(68)

(69)

(70)

(71a)

(71b)

(72)

(13)

(32)

In the range 0 < E( < 2m, cosE, fits two values of E--one in the lower half of the range, one in the upper
one. The fact that f; is in the same half-range as E, determines which of these is used. Kepler’s equation

then gives [, as

4.4 Motion in Three Dimensions

l() = E() - esinE()

(5D
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4.4.1 Celestial Coordinates

The basic frame of reference for all orbit calculations should be an inertial frame, one which does not
rotate like frames associated with the Earth or the position of the Sun. Such a frame is provided by
celestial coordinates, tied to the distant universe. At night the stars (except for the planets) appear to be
attached to a huge sphere, the “celestial sphere”: in celestial coordinates, the position of each of them on
that sphere is specified and fixed.

As the Earth rotates, the celestial sphere appears to revolve with a period close to 24 hours around two
“celestial poles,” the points straight above the Earth’s own two poles. Stars close to the celestial poles
seem to move in circles around them, and the closer the star, the smaller the circle: the “north star” moves
in a very small circle around the north pole, though it is not exactly at it.

(Actually, the position of the poles slowly drifts, because the axis of the Earth in space is not fixed
but rotates (“precesses”) around a cone, with a period of about 26,000 years. The Greeks already
knew about this “precession of the equinoxes” but it will be ignored for now; it can be taken into
account by correction terms in some of the equations.)

The period with which the celestial sphere (and all stars on it) appears to turn around its axis is about 4
minutes short of 24 hours: 24 hours is the average time the Sun goes around, but because the Earth orbits
the Sun, the Sun appears to make one rotation less per year than the stars, making its average period a little
longer.

A position on a sphere can be specified by spherical coordinates (8, ¢). On the celestial sphere these are
known as the declination  and the right ascension o, respectively; right ascension is often measured in
hours, minutes and seconds, and is measured from the “first point in Aries” (or “vernal equinox”) defined
further below.

The quantities (J, o) are generally called celestial coordinates, but here this term will also be applied to
the earth-centered rectangular coordinates (x,y,z) corresponding to spherical (1,0,ct). The celestial z axis
points to the northern celestial pole, and the celestial x axis (see below) points to the first point in Aries.

4.4.2 The Ecliptic

The Earth moves around the Sun in a plane (see comment on eq. (11) above), known as the “plane of the
ecliptic” or simply the ecliptic. From Earth we view that plane edge-on, and it appears to cut the celestial
sphere into two halves, forming a big circle on it. The ecliptic is inclined by an angle & ~ 23.45% to the
equatorial plane of the Earth, and that too is the angle at which that circle cuts the celestial equator.

Seen from Earth, the Sun must always be somewhere on that circle. The ancients identified 12
constellations of equal size around this circle, called the zodiac, since many are named after animals
(“zoology” has a similar origin). As the Earth circles the Sun in the course of the year, the Sun appears to
move around the circle and to spend a month in each constellation of the zodiac: of course, the constellation
cannot be seen during that month, because the Sun’s brightness blots out its starlight.

In 3-dimensional space two non-parallel planes cut each other along a straight line, like the two parts of a
hinge. The line along which the ecliptic intersects the equatorial plane of the Earth (i.e. the celestial
equatorial plane) is chosen as the celestial x-axis.

Two directions are possible on that line, occupied by the Sun (as viewed from Earth) in spring and fall.
The choice adopted is for the +x direction to point towards the spring position (vernal equinox), the “first
point in Aries”, so called because long ago it used to be in the constellation of Aries, the lamb. Because of
the precession of the Earth's axis (see above), it has gradually moved into Pisces (fish), and is now near the
boundary between Pisces and Aquarius (the water carrier); that is the origin of the song “The dawning of
the Age of Aquarius” in the musical play “Hair.”

4.4.3 Orbital Elements
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The motion of a satellite is best defined in orbital coordinates (€,1,C) centered on Earth, with the (§,n)
axes in the orbital plane and & along the long (major) axis of the orbital ellipse, pointing towards perigee.
The true anomaly f (eq. (8) above) is thus the polar angle between the “radius vector” r and the § axis.
The T axis, perpendicular to the orbital plane, will be assumed to extend into the northern celestial
hemisphere.

The orbital elements are six numbers specifying the satellite’s position. Three of them give give its
position in the orbital plane, and the other three are angles specifying the position of that plane relative to
the frame of celestial coordinates. The first three have already been discussed:

(1) The semi-major axis a of the orbital ellipse.
(2) The eccentricity e of the orbit.
(3) The mean anomaly /, an angular measure increasing each orbit (like the true anomaly £) by 360° (or 2
radians), but linear in time.
The above three give the position along the orbit. In addition, three angles
(i, w, Q) specify the orbital plane itself and the orientation of the orbit inside it.

We assume that the orbital plane cuts the celestial equator (X, y) along the line of nodes, specified by the
unit vector N. The orbit itself cuts the line of nodes in two points, in one it enters the northern
hemisphere, in the other it enters the southern hemisphere; N is directed towards the former point. The
angles then are

JAN
(4) The inclination i of the orbital plane, i.e. the angle between the z and [«

(5) The argument of perigee w, the angle between N and the radius vector to perigee, i.e. the § axis (see
drawing on previous page). It is measured in the (§,m) plane, the orbital plane.
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(6) The longitude Q of the ascending node, the angle between N and the x axis, i.e. the direction to the
first point in Aries (see Figure). It is measured in the (X, y) plane, the celestial equator.

4.4.4 Coordinate Transformations

To help relate orbital (E,n,C) to celestial (x,y,z), two auxiliary systems of coordinates can be used,
denoted here (xp,Vn,zn) and (X;,¥i,Zi)-

A N A
Let ()A( , §7 , z Jand (§ ,m ,T ) be the respective unit vectors. In the orbital plane, the unit
vector N along the line of nodes is given by

A AN
N=E cosw-m sinw (73)
The (Xp, Yn, Zn) coordinates are obtained by rotating (§,1,C) in the orbital plane so that X - )?n =N.
Because the rotation is around the T axis, z, = C, unchanged. We get
Xn cosw  -sinw 0 15 15
Yn = sinw cosw 0 - nm = Ay M (74)
Zn 0 0 1 C C
Then
Xp = Ecosm -1 sinw (75)

and applying the gradient operator recovers equation (13). Alternatively. one can start with unit vectors,
define rotations and then infer corresponding relations such as (75). The latter approach was used here to
derive rotations.

The next step consists of rotating the (xp,yn) plane by an angle i around the line of nodes, as if that line

were a hinge, to the celestial equatorial plane. That produces the (xj,yj,zi) system, with Qi = xAn
staying intact, since it lies along the line of nodes. From unit vectors

X 1 0 0 Xn Xn
Vi = 0 cost —sini * yp, = Aj- Yn (76)
Zi 0 sini cosi Zn Zn

The z; axis is now aligned with the celestial z axis, and only one more rotation is needed to align the other

two coordinates with (x,y), by the angle Q which brings Qi tothe X direction:

X cosQ —sinQ 0 Xn Xi
= sinQ2 cosQ 0 - yp = Ao Vi (77)
z 0 0 1 Zn Zi

By matrix multiplication

X 13 1
y = AQAi'Ay M= A (78)
z [« C

where A is given by

cosm cosQ2—cosi sinw sin  —sinw cosE2 —cosi cosw sin®2  sini sinQ
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cosm sinQ+ cosi sinwcosQ  -sinwsin€ + cosi cosw cosQ  -sini cosQ  (79)
sin i sinw sin i cosw cos i

Note that A,, Aj and A are hermitian, i.e. the transpose matrix obtained by flipping elements around the
main diagonal gives the inverse transformation. Hence the same property also holds for A.

4.4.5 Deriving the elements (i, w, £2) when (r,, vo) are given

As shown in eqn (79), the above three angles give the matrix A transforming orbital coordinates (§, 0, ) to
celestial ones (x, y, z):

g
y " (78)
z [«

However, it is also possible to derive A directly from (r(,v,) and use that information to determine the
values of (i, w, £2). To begin with, r, and v, are both in the orbital plane, hence their vector product is

orthogonal to that plane and by definition gives é

ﬁ _ Iy © Vv,
" Cryo vV (80)
Since A is hermitian:
g X
n = ATy (81)
g z
it follows that
A A AN
€ = AX  + ARy T Ayz (82)
A
Since the inclination i is the angle between é and z
A
£ -z = cosi = As (83)

which also agrees with (79); since the inclination i is limited to the
range 0 <i <, the above defines sini as well.

In the orbital plane, IA'O = ry/rg and rAO X ﬁ are two
orthogonal unit vectors, making angles f, and w/2—f; with the &-
direction (see drawing). Hence

E =1 cosfy+(rp x& )sing
A A A
=Anx  + Ayy +Ayz (84)

Here the functions of f, are given by (71), the celestial components of r( are part of the input and those of

(rAO X é ) are easily obtained from (80), giving another column of A. Finally

A A . . A .
n =& x€ ) =1 sinfy-@ x& )cosfy
(85)
gives the middle column.
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When the matrix (79) is equated to A as derived here, we get 9 scalar equations, from which in principle w
and © can be derived (i is already known from (83)). The algebra is greatly simplified, however, if one
notes that by (78), A is the product of three hermitian matrices

A = AQ' Al. A(,l)

and hence
A-AyT = Ag A (86)
Spelled out:
Al A Az cosw sinw 0 cosQ —sinQcosi sinQsini
Ay Ay Ay —sinwm cosw 0 = sinQ cosQcosi —cosQsini  (87)
A31 A32 A33 0 0 1 0 sini cosi
The factorization gives nine equations:
Ajcosm — Appsinm = cos Q (88-1)
Ay cosw — Ayysinw = sin Q (88-2)
A31 COSm — A3zsin(l) =0 (88-3)
Ay sinw + Aj,cosm = —cosi sin€2 (88-4)
Ay sinw + Ayycosm = cosi cosQ (88-5)
Aj;sinw + Azycosm = sini (88-6)
A3 = sinQ sini (88-7)
Az = cosQ sini (88-8)
Aj;=cosi (88-9)

With 9 equations defining 3 unknown angles, extracting those angles seems like an easy task, but
care is needed, because the equations are not independent. Furthermore, since either sini or cosi
can go through zero, it is best to avoid division by those factors. Starting with (88-9)

cosi = Ajz; (88-9)
Then by (88-3)
As? sin?w = Ajzp2cos?w = Az 2(1 - sin?w)

sinw = = A31/(A312 + A322)1/2 (893)
Since we do not yet know the proper sign, we assume temporarily
sinw > 0:

sinw = Ay /(As2 + Ajp?)2 (89b)
Then by (88-3)

cos W = As/(As2 + As2)12 (89¢)

And by (88-6)
Aj; sinw + Azycosm = sini

The angle i is between 0° and 180°, hence sini > 0. If then equation

(88-6) gives it a negative value, this means the signs of (sinw, cosw) must be reversed. If sini=
0, the situation is degenerate, no line of nodes is defined, and (w,Q) are ill-defined too; only their
sum w+ Q has any meaning.

Suppose the C-axis moves through the z-axis, approaching it from one side and then receding on
the opposite side. The inclination i decreases to zero and T and z coincide, but after that it does not
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cross into negative i as might be naively assumed, but rather, bounces back into the positive range,
possibly with a discontinuous slope, because the range of i is 0° to 180°. What does happen
however is that m and Q jump by 180° as the ascending node and the descending node switch
sides. The same orbit but clockwise would have inclinations around 180°

Now equations (88-1) and (88-2) give (cosQ, sinQ2), completing the set. Nowhere has it been
necessary to divide by sini or by cosi.

4.5 Transformations that depend on the Time
4.5.1 Relating (x,y,z) to geographic coordinates.

The frame of celestial coordinates (x,y,z) is inertial, fixed in space. The Earth has its own frame of
reference, its geographic coordinates (xg, yg, Zg). Because the Earth rotates, the relation between the two is
time-dependent, and to express it properly, some system of measuring time must be specified. The system
preferred here is that of Julian time.

4.5.2  Julian Time

Any astronomical calculations that depend on time require some standard system of time measurements.
Traditionally astronomers use the Julian Day
or Julian date (JD), with fractions denoting the part of the day that has elapsed.

There is a problem in matching the fractional part, though, because the commonly used measure for
fractions of day, universal time (UT) is measured from midnight. (Astronomers also call it "Greenwich
civil time," while they reckon "Greenwich Mean Time" or GMT from noon.)

On the other hand, the Julian day by tradition starts at noon. Then on any day at UT = 0 the Julian time is
a half-integral number, ending in .5

The usual method of calculating Julian time is therefore to use the sum of the Julian time at UT =0, a
half-integral number, and add to it the UT, as a fraction of a day. The result will be denoted as the Julian
Day, since it is measured in days.

Below is the algorithm used by Meeus [1991] to calculate the Julian day JD for epoch J2000.0 at universal
time UT in year Y, month M, day D (with fractional part). M should be between 3 to 14, so that if M=1,2,
a year is changed into months (Y — Y-1, M—M+12). Then

A =1INT (Y/100) (= century no,)
B=2-A+INT(A/4)

Then the Julian Day JD is
JD = INT[365.25 (Y +4716)] + INT[30.6001(M+1)] + D + B — 1524.5

Note that on (say) 0 UT on April 10, D=10, even though only 9 days have elapsed since the beginning of
the month: this avoids having a "day zero" in each month, and is all accomodated by the constant added.

The value of JD is in the millions, so actual formulas introduce a measure of
time given by a smaller number, the epoch time T in Julian centuries

_ JD -2451545.0

36525 (90)
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4.5.3 The Earth's Rotation

The amount of rotation which the Earth has undergone at any given UT is given by the angle ¢g at that
time, the angle between the celestial x direction and the geographic xg direction, which is on the
Greenwich meridian. For
UT = 0 on any day (i.e. with JD in (90) a half-integral number), ¢ in (hrs, min, sec) is given by

g = 61 41m 50534841 + 8640 1845 .812866 T + 05.093 104 T2 - 05.000 0062 T> (91)

or in degrees

dg= 100.460 618 37 + 36 000.770 053 608 T + 0.000 387 933 T> - T3/38 710 000
92)
The nonlinear terms presumably express the slowing down of the Earth's rotation.

To find ¢g for any other UT, multiply UT (in degrees, 24 h = 360°) by 1.002 737 909 35 (=1 + 1/365.25)
and add. Thus ¢g rotates each day a little over a full circle. Or else, given JD with fractional value, one
calculates

$g =280.460 618 37 + 360.985647 366 29 (JD - 2451 545.0)
+0.000 387 933 T2 - T3/38 710 000 (93)

It is however better to treat UT separately, otherwise accuracy may be lost in (90), where two nearly
equal numbers are subtracted. In any case, double-precision calculations are pretty much indicated in all
such work.



4.5.4 Relating geographic and celestial coordinates

The two are related by a rotation by the angle ¢g:

Xg = XcCOospg * y singg

Yg = —Xsingg +y cosfg (94a)
Zg = Z
hence
Xg X
Yg = Ay y (94b)
Zg Z
where

cospg sinpg 0

A, = —sinfg  cosdg 0 (94c)

0 0 1

4.5.5 Ecliptic Coordinates ("celestial" in Meeus)

The first step in deriving the position of the Sun is a rotation to ecliptic
coordinates (Xe,Ye,Ze), With the xe-axis as before pointing to
the first point in Aries but the z-axis rotated by an angle & =
23.459 around the x-axis:

Xe = X
Ye = ¥ COSE — Zsine (95a)
Ze = y SIng +Zzcose
hence
Xe X
Ye = A3ty (95b)
Ze z
with
1 0 0
A; = 0 cose - sing (95¢)
0 sing cose

4.5.6 The position of the Sun
Finally, we need the vector pointing at the Sun.

If A is the ecliptic longitude of the Sun (its "celestial
longitude" in Meeus, p. 87.7), then the unit vector to the Sun is

T s= X ocosh +y ¢ sinh (96)
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Given below are two derivations of A: that of “low precision formulas for positions of Sun and Moon” of
the nautical almanac, and the derivation by Meeus [1991] of the “true longitude” ® which differs from A by

some seconds of arc (the book also gives a more accurate derivation of A).

The position of the Sun is needed for two purposes, to obtain the approximate direction of the solar wind
for modeling the magnetosphere, and to derive the Sun’s perturbation of a satellite orbit. Since the direction
of the solar wind fluctuates by several degrees and the perturbation term is merely a small correction to the

equations of motion, low accuracy formulas are quite adequate.



Below the notation of the astronomical almanac is retained. The time parameter is
n=JD-2451545.0
The mean longitude of the Sun, corrected for aberration, is then
L = 280.461 +0.985 6474 n

Mean anomaly, in degrees
g = 357.528 +0.9856003 n

Ecliptic longitude, in degrees

A =1L +1915sing + 0.020 sin 2g
Angle between the ecliptic and the equator, in degrees

e = 23.439 -0.000 0004 n
Distance R to the Sun, in AU, where 1 AU = 1.49599 10!! m

R = 1.000 14 - 0.016 71 cos g — 0.000 14 cos 2g

2-Body 18

97
(98)

(99)
(100)

(101)
(102)

In Meeus [1991] on p. 151, the time parameter is T = n/36525, i.e. where n is in Julian days, T is in Julian

centuries. Then

L = 280.46645 +36000.76983 T + 0.0003032 T?

M = 357.5290 +35999.05030 T - 0.000 1559 T2~ 0.000 000 48 T> (103b)

and the “true longitude” is
O =1L +(1.914600 - 0.004 817 T — 0.000 014 T?) sin M
+(0.019 993 - 0.000 101 T) sin 2M + 0.000 290 sin 3M
Meeus also gives a formula for ¢ in degrees, minutes and seconds, to order T3

Finally
R =1.000 01018 (1 - €?)/1 + ¢ cosv

where v is the true anomaly v = M+ (0 -1L)

4.5.7  Solar ecliptic coordinates

These coordinates, denoted (xg, ys, Zs), are defined
as having zg = ze but with xg pointing at the Sun

Xg = XeCOSA + yesinh
Ys = —Xe SINA +ye CcOS A (106a)

Zg = Ze

(103a)

(104)

(105)
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Xs Xe
Ys = Ay Ye (106b)
Zg Ze

4.6  The Earth’s Magnetic Field

The Earth's magnetic field can be approximated by a magnetic dipole at the Earth's center, inclined by an
angle 0y = 11.2° to the Earth's rotation axis, along the meridian ¢ = ¢y = — 70.75° where ¢ = 0 is the
Greenwich meridian. To accurately describe the global field, especially near the Earth's surface, additional
magnetic field components must be added, usually expressed by the gradient of a scalar magnetic potential,
expanded in spherical harmonics. For best fit to this corrected magnetic field, the dipole representing the
field must be slightly shifted from the center of the Earth. However, all these corrections are relatively
small at r > 5 Rg and are completely negligible for r > 10 Rg; since the "Profile" mission is primarily

concerned with the distant field, they will be neglected.
4.6.1 Dipole Coordinates

Let (xg,yg,Zg) be geographic coordinates--zg along the Earth's axis, xg through the Greenwich
meridian. The dipole axis passes the magnetic pole at (04,$4) = (11.2°, =70.75%). The northward
unit vector along that axis is

Z 4= pg sinf+zz cosdy (107a)
where
6g = )?g cosy +§g singy (107b)
hence
z 4= )?g sinB, cospy + §g sinf sing +zAg cosB (107¢)

The x4 axis is in the same plane as zq and zg, hence yq is normal to that
plane, and it follows (for a right-hand system)

A AN
A Zg * 74
Y d T A Ao (108)
Czg 0 zqY
Now
zAg x Z d= - fg sinf, sing, + §g sinB, cosdyg
and the magnitude of that vector is sinf,, hence
V d= -Xg singy + ¥y cosd (109)
Finally
X d= §7 dx% d= fg cosBycospy + §g cos0, sing —zAg sinf, (110)

We thus find that the rotation, between either unit vectors or coordinates, involves a matrix A; satisfying

Xd Xg
yd = A" yg (111)
z4 Zg
where
cosBycosdy cosBpsing, - sinf
A = — sind, cosdy 0 (112)

sinBycosdy sinBysing, cosB



A, is of course hermitian, A, = AT
4.6.2 Locating the Magnetic Pole
The dipole field can be expressed by
B = -Vy, = -aV[g,°%os0 + g,'sin0 cos¢ + h,'sinO sind] (a/r)?
= -V(g’° Zg + gllxg + hy! Yg) (a/r)?
= (2’2 +e'%yg W'y Y@M+ T )

(no subscript on r, which is the same in all earth-centered systems).
On the dipole axis B is radial. Neglecting the sign for a moment,

A A A A
(g°2g +g'xg +h'yg ) =kr
g g
= k[Xy sinBycosdy + Yo sinOpsing, +zZg cosOy]
g Yg g

Comparing magnitudes of the two vectors

k*= (g% + (&' + (')
Equating terms then gives
cosO, = g;%k
singy = h;!/ksinf,

and to resolve ambiguity (in case signs need to be inverted)

cosdy = g;'/ksin0,
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(113)

(114)

(116)
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4.7 The Earth's Magnetosphere and its Coordinate System
4.7.1 The Configuration of the Magnetosphere

Most of the magnetosphere is filled with a nearly collision-free plasma, and its electrodynamic properties
therefore tend to spread along magnetic field lines. We will thus count as belonging to the magnetosphere
all points in space linked to Earth by magnetic field lines. Near Earth these lines are "closed," i.e. anchored
in Earth at both their ends. In addition, some lines connected to the polar caps appear to be "open," i.e.
temporarily linked to interplanetary field lines, though in practice it is in general not easy to trace where
that linkage occurs. A third class of field lines are those of the interplanetary magnetic field (IMF) which
are embedded in the solar wind and travel with it.

The IMF and the solar wind confine the field lines of the magnetosphere inside a cavity, bullet-shaped in
front and tending to a cylinder on the night side. The surface separating it from the magnetosphere is
known as the magnetopause: in observations it is usually marked by a sudden shift of the magnetic field B
and the plasma density n. However, the component Bj normal to the magnetopause is generally small and
in the presence of noise it is not easy to tell when it is small but finite (as expected from open lines) and
when zero.

On the dayside, the "subsolar distance" rg of the "nose" of the magnetosphere from the center of Earth is
typically 10-11 Rg, the distance to the boundary abreast of Earth is about 15 Ry and the asymptotic radius
of the distant tail is about 25-30 Rg. These and other parameters defining the magnetosphere can change
appreciably, depending on the solar wind pressure, the IMF and the preceding history of magnetic activity.
Sunward of the magnetopause is the collisionless bow shock, typically 2-3 Rg beyond the "nose." Outside
the bow shock is the solar wind, while behind it is the magnetosheath, plasma which has passed through the
shock, where it has heated up at the expense of its bulk velocity. That velocity gradually recovers its
interplanetary value as the plasma flows past the Earth.

Of the magnetic field lines swept into the tail, most extend beyond the range of regular observations and
form two oppositely directed bundles, the fail lobes. Separating the two lobes is a region of very stretched
but closed field lines known as the plasma sheet, because its plasma density (typically 0.4 ions /cm?) is
much higher than that of the lobes. Typically the plasma sheet is 2-6 Rg thick and its central surface, the

locus of minimum | B| on the threading field lines, is known as the neutral sheet.

Schematic drawings of the magnetosphere often show a dipole axis perpendicular to the direction of the
solar wind. However, the actual angle between the two varies, because of the inclination £ = 23.45% of the
Earth axis, combined with the offset angle ¢y = 11.2° between the magnetic dipole and the rotation axis.

It is customary to express these effects by means of the #ilt angle \ which complements to 90° the angle
between the dipole axis and the vector pointing into the flow of the solar wind, i.e. y = 0° signifies a dipole
axis perpendicular to the solar wind. The actual solar value of 1 varies with time between the limits =(e +
do) =~ £34.65°.

The equatorial surface of the magnetosphere, which includes the neutral sheet, also varies with 1, as
described further below.

4.7.2  Geocentric solar magnetospheric coordinates

Suppose the unit vector zAd along the dipole axis makes an angle 90° — y with the unit vector Qs
pointing to the Sun, which is also assumed to be the direction from which the solar wind arrives.
Neglecting all non-dipole components of the Earth's field and any effects of the IMF, only two vectors
affect the geometry of the magnetosphere, namely Qs and zAd . One therefore expects the plane of those
two vectors to be a plane of symmetry of the magnetosphere.
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If the magnetic dipole were exactly aligned with the Earth's rotation axis, i.e. if 8, in (98) were zero, that
plane would rock back and forth around the xg axis in an annual cycle, aligning itself with the (xg,zs) plane

at the solstices and departing from it the most at the equinoxes. Because ¢y = 0 , the plane of (’?s , zAd )

undergoes on top of the above variation an additional back-and-forth rocking motion of smaller amplitude
and with a period of 24 hours.

The geocentric solar magnetospheric (gsm) system of coordinates (Xgm, Ysm» Zsm) has this plane of
symmetry as its (Xsm, Zsm) plane, with x¢p along the Earth-to-Sun direction, i.e. Xgm = Xg. Thus gsm
coordinates are obtained by rotating the solar ecliptic coordinates by some angle  around the xg axis:

Xsm =~ Xs
Ysm = VYs COS X — Zg Sin (117a)
Zgm = Ys Siny + zg cosy

From this
gm = As'rg (117b)

with
1 0 0

As = 0 cos —siny (117¢)

0 sin cos

To obtain y it is necessary to retrace transformations from solar ecliptic through ecliptic, celestial and

geographic, all the way to dipole coordinates, and express in the solar-ecliptic frame the unit vector z d
along the dipole axis:

Z g=aXx ¢+tby g+cz ¢ (118a)
We also know that

Z 4=1X gmsinp +Z gmeosy  (118b)
. A A . . .
Since X gy =X g, comparing the above two equations gives
simp = a (119a)
AN AN
Z gmcosy =bz ¢ +cz g (119b)

. A . .
and since Z gy, is a unit vector

Z sm= B2+AD)2[bz ¢+cz ¢ (120)

from which, by (116)

C b

siny, = (b2+ )12 cosy = (b2+ c2)1”2

tany = (121)

o |o

4.7.3  Aberrated GSM coordinates (AGSM)

For an observer in the Earth's frame, the direction from which the solar wind appears to blow is not that of
X s, but one that is aberrated by an angle ¢, = 4° due to the Earth's motion around the Sun. To take that
effect into account in derivations like the one above, it is necessary to replace the ecliptic coordinates (xg,
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Vs, Zs) by aberrated coordinates (X, Ya, Za), obtained by rotating the ecliptic coordinates by an angle ¢,
around the zg axis:

Xa cos g -sindgy, 0  Xxg
Va = sin ¢y cosdg O Vg (122)
Zy 0 0 1 zg

This correction was not included in any of the calculations here, since it is small and since the direction
from which the solar wind arrives at Earth undergoes in addition a random variation of comparable
magnitude.

4.7.4  Sequence of calculations

Start with eq. (109¢) for the unit vector along the dipole axis in geographic
coordinates.

4= fg sinB, cospy + §g sinf sing +zAg cosBy (107¢)

N>

Let this vector be denoted rg for brevity, since it is in geographic coordinates.
transforming to celestial coords., by (94)
AN AN
r =A'r g
In ecliptic coords., by (95)

? e=A3A2-1/I\' g

and reaching solar ecliptic coords, by (96), (118)

AN A

P s = AJAAIT g = aX g+ by stcZ g (123)
Then if PMG = SQRT(b? + ¢?) simp =b/PMG  cosy =c/PMG

Next suppose the celestial coordinates of some orbital point R = (X,y,z) are given. To obtain the GSM
components Rgy,, we need derive

Rsm = (As A4 A3 R (124)

This suggests a need for two further matrices:

Ag= AL A A,7! [used in (121) above] (125a)
and

A7 = A5 A4 A3 (125b)
from which

Ysmec = A7 °r (125¢)

4.8 Regions of the Magnetosphere

Given all the orbital mechanics and coordinate transformations, it is possible to simulate “Profile” missions
and in particular, find how effectively their multi-spacecraft constellations sample various regions of the
magnetosphere. The position of any given orbit in the magnetosphere is far from static: not only does it
rotate around the Earth (in GSM coordinates) during the course of a year, but the tilt angle also modifies
the structure of the field. In addition, of course, changes occur which can’t be predicted, e.g. those due to
varying solar wind pressure and activity levels.
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Tha Space Situation Center (SSC) which tracks spacecraft orbits for the National Space Science Data
Center (NSSDC) has a code, written by Mauricio Peredo, classifying any point in space according to the
magnetospheric region it is most likely to occupy. Its description is found on the world Wide Web at

http://sscopl.gsfc.nasa.gov/ssc_reg doc.html

That code is rather lengthy and was therefore not used here, though some of its formulas were retained.
Instead, a customized code was written, addressing the particular needs of “Profile.” In its current form,
that code assigns to the point which is being examined an index IREG from 0 to 9, classifying it as
belonging to one of the following categories:
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IREG =0 Inner magnetosphere
=1 Near the magnetopause, probably inside it.
=2 Near the magnetopause, probably outside it
=3 Outside magnetopause, but inside the bow shock
= Solar wind, outside the bow shock

5 Tail lobe
6 Probably in the plasma sheet
=7 Near center of plasma sheet.
8 Transition between inner magnetosphere and plasma sheet.
9 cusp or polar region on the day side

The preceding drawing sketches out these regions in the zgy, plane. It must be stressed here that the

classifications merely state high likelihood of the point belonging to a region, for average solar wind
conditions. The code which classifies points contains three algorithms, similar to those used in the SSC
code:
(1) An analytical approximation to the shape of the magnetopause, due to Sibeck et al. (JGR 96, 5489,
1991)
(2) An analytical approximation to the shape of the bow shock, based on one by Fairfield (JGR 76,
6700, 1971).
(3) An analytical approximation to the shape of the equatorial surface, based on one by Tsyganenko
(JGR 100, 5599, 1995, eqs. 24-26).

4.8.1 The Magnetopause

Sibeck et al. [1991] approximated the shape of the magnetopause by an axisymmetric surface. If in GSM
(or in aberrated AGSM)

R2=y2+ 72 (126a)
then the magnetopause is approximated by an ellipsoid
Fi(r) = R?+ S;x% + S, (p/pp)""* x + S5 (p/p)'® = 0 (126b)

where p is the solar wind dynamic pressure, with p, = 2.04 its average value,
S; = 0.14,S,= 18.2, S;= —217.2, and where all distances are in units of the Earth radius Rg. In
simulating the mission we assume p = p, and neglect the factors with p/pg, but they might come useful in

later work. Eq. (126b) also ignores the effects of the interplanetary magnetic field, whose effects were also
studied in that article and in later work by the same authors.

The distance rg of the subsolar point (“nose of the magnetosphere”) is obtained by solving for R=0: it is
very close to 11 Rg.

For the regions characterized by IREG=1 and 2 we next seek two additional ellipsoids enclosing the
surface, one on the inside, one on the outside, cutting the x-axis at rg = 1 Rg. It would be easy to define
such surfaces by scaling all distances in (126) by the appropriate factor k, in a way similar to what is done
for the bow shock in the next section, giving ellipsoids of the same shape but different scales. That
however causes the ellipsoids to be most widely spaced at the subsolar point, whereas the boundary layers,
for instance, are narrowest there.

Instead, therefore, we choose the two other ellipses to have the same foci as the one of (126b), making the
spacing smallest at the subsolar point. If the factor (p/py) in (126b) is ignored (i.e. is equal to 1; it can
easily be reinstated) and

A = Sl B 282/281 C = S3 —822/481
then



2-Body 26

Fi(r) = R2+ A x+B)? =C (127a)
The semi-major axis is then @ = C/A, the distance 8 between the foci is
& =2a (1-A»7 (127b)

and the foci are on the x-axis at x = -B =+ §/2. To assign a given point, we form its distances (R, R,) from
the two foci: if

2(a-1) <R+ Ry<2a
the point has IREG=1, and if
2RE < Rl + R2<2(a+1)
it has IREG=2. If R| + R, is bigger still, the point’s position relative to the bow shock should be tested.

4.8.2 The Bow Shock

Fairfield in 1971 approximated the shock position in AGSM by a hyperboloid (one rather close to a
paraboloid)

For) = R2+ AxR + BxX2+ CR + Dx +E =0 (128)
where
A =0.0296 B =-0.0381 C=-1.28 D =45.644 E=-652.1

The subsolar distance is close to 1.3 rg. As in the SSC code, this distance can be scaled so that when
different values of (p/po) change rg, the hyperboloid scales to a larger or smaller one of the same shape but
still cuts the x-axis at 1.3 Xgg. Such scaling occurs if we replace

R — kR x — kx
The subsolar point of the hyperboloid is reached when R=0, i.e. when

B (kx)2+ D (kx) +E =0
Kx = % (-D +[D? - 4BE]'?) =x, (129a)

Here X, is a constant derivable from the constants of (128). If the subsolar distance of the magnetopause is
Xgs, the value of x for which (133a) is satisfied should be 1.3 rg, hence
k = x¢/1.3 1 (129b)

Equation (128) is then modified by multiplying (R?, A, B) by k2, and (C,D) by k. If F, > 0, the point is in
the solar wind, otherwise it is inside the bow shock.

4.8.3 The Equatorial Surface
If the Earth’s dipole is perpendicular to the direction of the solar wind--as happens twice a day in two parts

of the year, near equinox--then the magnetospheric field is expected to have north-south symmetry across
the equatorial plane zgy, = 0.

At all other times the equatorial surface (which may be defined as the surface where By reverses sign,
where p? = x%*+ y?) is observed to be deformed. Near Earth it approximates the dipole’s equatorial plane,
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while in the fat tail its field lines tend to become aligned with the + xgpy, direction, defined by the solar
wind.

Observations suggest that near midnight each the plasma sheet behaves as if attached to the equatorial
plane of the dipole at a distance of about Ry; = 8 Rg so that it is displaced from the z=0 plane by Ry siny,
up to about 4 Rg. However, the magnetopause is observed to depart very little from north-south symmetry,
even when v is large.

Since the northern and southern halves of the tail contain the same amounts of magnetic flux, one would
then expand the “hinging” to expand one side of the tail and compress the other, reducing the magnetic
field intensity B on the expanded side and increasing it on the compressed one. Plasma pressure
considerations however require B in the northern and southern tail lobes, at any given distance, to be about
equal. Hence the equator warps in a way that displaces it near the flanks in the opposite direction to its
displacement near midnight: if at midnight the equator is displaced northward, its sections near the
magnetopause move southward.

Empirical formulas for such displacements were derived by Fairfield, Gosling and others, but the one used
here is due to Tsyganenko and is also used by the SSC. The use of that formula however needs
modification, because it does not give the equator as defined by By, instead, it gives the center of a current

distribution used as the source of the tail field in Tsyganenko’s model. Far from Earth, this is very close to
the center of the displaced plasma sheet, but near Earth the fields of the dipole and ring current enforce
their own symmetry, which tends to center on the dipole equator, whose shape is flat, not warped.

Because of that, the full Tsyganenko formula is only used tailwards of xgq = — 8 Rg (Xgd is the x-
coordinate in the solar dipole frame, with the z axis along the dipole and xgq in the GSM y=0 plane).
Sunward of x¢q = 0, the dipole equator is used, and for 0 > xgq > -8, the part of the formula expressing the
y-dependent warping is linearly interpolated as a function of Xgq.

The shape of the equatorial surface is given by a function
z = zg(X,y ) (130)

with  the tilt angle: zg is the distance on must move north from (x,y,0) (or south, if zg < 0) in order to
reach the equatorial surface. Tsyganenko approximated

zs(xy ) = zgi(x) + zo(y, W) (131a)

with
zs1(x,) = 0.5 tam [ (02 — 2Ryx cosy)!’2 — (u2+ 2Ryx cosy)'2] (131b)
where
u? = x>+ (Ry? + Ax?)cos?y
and
4
zZs(y, ) = G simyp —Ly4 Yy (131c)

Here Ry; = 8 Ry is the hinging distance, and for small values of | x|, (135b) gives
X .
21 (xp) = —2 Rysiny (132)

Other constants (all measured in Rg) are Ax =4, L =10, G = 10. By (131b), z; smoothly tends to near the
dipole equator as x approaches zero, and is therefore retained in the range 0 > x > -8. However, zg, does

not change to match the flat dipolar equator, and is therefore multiplied in that region by a (positive) factor
0<-xg9/8 <1.
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4.9 Launch Windows

4.9.1 General Considerations

Since "Profile" satellites are meant to be small and cheap, they are not expected to carry any propulsion.
The only control over their orbit is then an appropriate choice of launch conditions. If the launch is
assumed to be from Cape Canaveral and towards the East, only a few adjustable parameters remain. Two
parameters are obviously the time of day of the launch and the day of the year on which it takes place.

A third parameter is available if a 4-stage launcher is used, so that the first three stages place the "Profile"
bus in a circular parking orbit and the 4th stage then injects it into its long ellipse. The delay between
launch and injection then provides a third parameter determining the choice of orbit.

As will be seen, the first and third parameters determine Q and w of the orbit; the orbital inclination i is
fixed by the latitude of the launch, which is 28.5.

Not considered here are possible shifts of the launch direction from east, which modify 7 and require
rather small Av. Also, the parking orbit will be assumed to begin at Cape Canaveral, latitude 28.5° and
longitude — 80.5%; in an actual launch, a certain horizontal distance is covered by the rocket, and the
parking orbit is entered further east. The injection by the 4th stage is similarly assumed to be instantaneous.
It is assumed that all orbits obtained here are also feasible with acceleration distances taken into account,
though the firing times may have to be shifted.

Before selecting launch parameters, one must decide on criteria for evaluating candidate orbits.
Obviously, the orbital lifetime should be long, and perigee height should not drop into the atmosphere, but
rather, rise higher. These considerations involve the perturbation of the Sun, Moon and the Earth's
equatorial bulge, and will be dealt with in a later section, but it can be stated here that date of launch is the
most useful variable here.

For a magnetospheric mission, coverage of the plasma sheet should be as extensive as possible, since
that region is the sources of aurora, substorms and other activities. Naively one may expect that an orbit
whose plane is close to the ecliptic is best here. Unfortunately, orbits close to the ecliptic also spend
relatively long times in the Earth's shadow, where electric power is not produced, the satellite cools down
drastically and stored electricity must be used to keep batteries from freezing.

4.9.2 Determining ® and Q

In each revolution of the Earth, the
radius from the origin to Cape
Canaveral describes a cone with half-
opening angle 90° — 28.50 = 51.5.
Because the Earth's axis is inclined to
the ecliptic by an angle € ~ 23.5°- the
angle between the radius to Cape
Canaveral and its projection on the
plane of the ecliptic varies each day
between 28.5% — ¢ =~ 5% and 28.50 + ¢
~ 520 (see figure).

The orbital plane of the satellite is
tangential to the cone at the point of
launch, and its inclination i, to the plane
of the ecliptic therefore also has the
range
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2859 - £<i,<28.50+¢

The actual value of i, will depend on the time of launch. Each day has one "reference time" t, at which a
launch gives the bus carrying the satellites its smallest possible i,, about 5°. The orbit obtained by

launching at that time and immediately following that with 4th stage firing will be termed the reference
orbit.

Suppose the plane of the paper in the above figure includes two generating lines of the cone, specifically,
the ones with smallest (5°) and largest (52°) values of i,. Then the ecliptic X axis is perpendicular to the
paper and is directed out of it.

The plane of the reference orbit, tangential to the cone along AO, is also perpendicular to it, and it follows
that the X, axis lies in the orbital plane. However, the x, axis is the same as the celestial x axis, and
therefore also lies in the celestial equator. This makes it the line of nodes of the reference orbit, so that this
orbit has

Q=0 (133)

If the 4th stage fires at point A, and it is assumed that the final speed is acquired there instantaneously
(again, an approximation), then point A will also be the perigee point of the orbit. Thus the angle between
the line of nodes (which is also the x-axis) and the radius to perigee is 90°, providing another orbital
element

=900 (134)

Even though the reference orbit
has the smallest possible inclination
to the plane of the ecliptic, it does
not provide very good coverage of
the plasma sheet. The preceding fig-
ure gives the orientation of that orbit
in (Xe,Ye,Ze) space, where the Sun
appears to rotate in the course of the
year around the (Xe, ye) plane.

Perigee is at point A in the (ye, z¢) plane, and apogee is in that plane too, on the other side. For apogee to
be in the middle of the tail, the Sun must be on the same plane, i.e. at the winter solstice (see figure).
Because the plasma sheet behaves as if it were hinged to the dipole equator (and here the difference
between geographic and dipole equator is neglected), it will move away from the ecliptic, to the side of the
ecliptic opposite the one of the orbit, greatly reducing tail coverage by the satellites.

Given a free choice of the time when the 4th stage ignites, this is readily remedied. If the firing is delayed
until the satellite has moved 90° away from point A (a quarter-period for a circular orbit), it will be on the
x-axis, placing both perigee and apogee on that axis--perigee with negative x, apogee with positive. Apogee
is then in the tail during fall equinox, when plasma sheet deformation is at its smallest, giving very good
tail coverage.

Alternatively, if firing is delayed until a 270° arc has been completed, apogee will be in the tail at the
spring equinox. Of course, either delay can be increased by an arbitrary whole number of orbital periods.

The general orbit can thus be characterized by two numbers. One is the delay 0, (of either sign, in degrees

or in hours, 1 hr = 15%) of the launch time relative to that of the reference orbit. The other is the length of
the "coasting arc" §; (in degrees), spent in the parking orbit between launch and 4th stage ignition. In terms

of orbital elements
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O]

=4,
o = 900+39, (135)

4.9.3 Eclipses

All “Profile” satellites are expected to pass through the Earth’s shadow once per orbit. During an eclipse,
solar cells provide no power and the satellite cools down. Scientific data-gathering will probably have to
stop, but power is still needed for heating batteries to keep them from freezing, and also for maintaining
essential functions, e.g. for the computer’s memory and clock. Eclipses near perigee are brief and will not
be considered here, but distant ones pose a serious problem.

The previous section concluded that the best coverage of the plasma sheet is achieved by orbits with
minimal inclination 7, to the ecliptic and with apogee on the x-axis (Q=0, o = 0 or 180°). Unfortunately,
placing the apogee on the x axis means that once a year, near one of the equinoxes, it will be in the Earth's
shadow. Near apogee the satellites moves very slowly, and their eclipses there are quite long. Because of
the smallness of i, before and after that equinox other distant parts of the orbit will also hit the shadow,
causing additional long eclipses.

As long as we plan to cover the plasma sheet during equinox,
this problem will persist, because at that time of the year, the
Earth's shadow is also cast right down the plasma sheet. Any
practical orbit thus requires a certain compromise.

One way of obtaining a better understanding of distant eclipses is to express the direction of the vector

é , pointing towards perigee, in ecliptic coordinates (Xe,Ye, Ze). Using the transpose of the matrix A of eq.
(79), we have here

15 X

n = ATy 81)
[« z

Let the top row of AT be (a;, a,, a;). Then

£ —ax +ay +agz (136)
and by eq. (79)
a; = cosw cosQ — cosi sinw sing2
a, = cosw sinQ + cosi sinmw cosQ (137)
a3 = sini sinw
By (95)
Xe 1 0 0 Xe
= AT ye = 0 cose -sine ye (138)
z Ze 0 sing cose Ze

where € = 23.450 is the inclination of the Earth's axis. Thus
X = Xe Y =YeCOS € — ZgSin € Z =yeSin € + ZeCOS € (139)

Hence by (137)

g

a;Xe + (apcose + a3 sing) ye + (—a, sing + a3cose) zg (140)

with a similar relation between unit vectors.



The orientation of é in space may then be expressed by the
angles (Y, %) defined in the figure. If é ¢ 1s the projection of
é on the (Xe, ye) plane, i.e. on the ecliptic, then y; is the angle

between é e and é while y, is the angle between é ¢ and the

X . direction. We have from the scalar product
. A .
smy; = é *Z ¢ = —apsine + azcose (141)

Also, tany, is the ratio between the ye and xe components of é , 1.e.

a, cose + aj sing

tangy = (142)

2-Body 31

The angle , indicates the time of the year when perigee is on the midnight meridian: for instance, if x, =

(0, 90,1809, 2709), this happens on an equinox or solstice in (fall, winter, spring, summer). Since apogee
is always on the opposite side of Earth from perigee, it follows that for the same four values of x,, apogee

is in the tail in (spring, summer, fall, winter).

More generally, let Qg be the angle between the
direction of the Sun and the x (or x¢) direction. To
calculate its approximate value, assume the spring
equinox falls on day 80 of the year and the Sun’a
motion around the ecliptic is uniform. Then on day-
of-the-year D

360
Qg =~ (D - 80) 365

Then as the figure makes clear, apogee is at midnight

on the day when Qg = x,, i.e. for day
365

D= 360 )X2+80

(subtract 365 if the sum exceeds 365).

The angle y; indicates the displacement of perigee
(and hence also of apogee) from the plane of the
ecliptic.

If %, is small, apogee is close to the ecliptic, and the
orbit may be vulnerable to long eclipses far from
Earth. If then y, = (0, 180°) apogee is in the tail
during equinox and plasma sheet coverage is good; if on the other hand

%2 = (909, 2709), apogee will tend to miss the midnight plasma sheet, because the warping effect is then at
its greatest and the midnight plasma sheet, being hinged to the magnetic equator, is displaced from the
plane of the ecliptic. If y, is large, e.g. y; > 45°, apogee will always miss the plasma sheet, no matter what

the value of , may be.

4.9.4 Eclipses in Keplerian simulations
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In the first round of simulations, described further below, 12 satellites of a simulated “Profile” mission
were followed for a year, assuming strict Keplerian motion, and were were examined once every hour.
Each time note was taken, among other things, of whether the satellite was in the Earth’s shadow beyond r
=2 Rg and if so, a tally was kept of the number of later checks which found it still eclipsed.

The Earth’s shadow was assumed to be a cylinder of radius 1 Rg with its axis along the Sun’s direction.
That seemed a reasonable approximation, considering that at =20 R the penumbra--the region in which
some of the Sun is obscured but not all of it--is only 0.2 R wide. One-time shadow passes were taken to be
1 hour long, whose with two consecutive positions in the shadow 2 hours, and so on.

The orbit with greatest plasma sheet coverage (Q = 0, w = 180°) and orbits close to it had conspicuous
“shadow seasons” around the fall equinox, with eclipses lasting up to 7 hours at its peak. Relatively long
eclipses also existed before and after the peak, their duration decreasing as one went away from the time of
their peak. For other orbital conditions, less severe “shadow seasons” were noted, and at times two peaks
were found, with various separations.

Eclipses are best studied in the frame of ecliptic coordinates (Xe, Ye, Ze) Which, like the celestial frame
(x,¥,2), is also an inertial frame. Consequently one can calculate in it orbital elements, distinguishing them
by subscript “e”. The three elements (ae, e, /o) are the same in both frames, but the remaining three (i, w,,
€,) are not and must be derived separately.

The derivation is quite similar to that of (i, w, £2), which started from the matrix A for which

X g
y = A n (78)
z C

and whose terms could also be expressed by (i, w, £2). Using the factorization (87) of A, equations were
obtained which allowed the three angles to be computed. Since by eq. (95)

Xe 1 0 0 X X
Ve = 0 cose —singy = As- y (95b)
Ze 0 sine COSEZ z
we get
g
= a- n (143a)
z C
where
a= A3A (143b)

The whole procedure can then be repeated, but with
ajj replacing 4;; everywhere.

If i, is not small, eclipses can occur only near two
points on the orbit, the two points at which it
intersects the ecliptic, located on the line of nodes
(top Figure).

One can then divide the orbit into two unequal parts
by a line through the origin, perpendicular to the long
axis of the orbit (bottom Figure): the small “near”
part centered on perigee, and
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the much larger “distant” part centered on apogee.
The line of nodes passes through the origin too and it
therefore has one orbital intersection in each part.
Eclipses that occur in the “near” part, however, are
not counted; therefore only distant ones contribute to
a “shadow season” and only one such season per
orbit is expected.

Calculating the time of that season is similar to
deriving the effect of x,: the Earth’s shadow is
projected along the line of nodes twice a year, when
Qg equals either Qe or Qe+180°. The first of these is
when the shadow is directed towards the distant
crossing. Thus the “shadow season” is expected to
peak when

Qg = Q¢ (144)

The shadow season is expected to become shorter when 7, increases, because steeply inclined orbits
quickly move away from the shadow cylinder. Eclipses are longest when we = 0, 180° and shadows occur
at apogee, and shortest when we = 90°, 2700 at which time they occur so close to Earth that they might even
miss being counted at all.

For orbits with small inclination i, the situation is somewhat different, because eclipses can now occur
even some distance from the line of nodes; in the limiting case of i, = 0, they can occur in any part of the
orbit. If we is near 00 or 180°, eclipses occur near apogee and one can expect a long season around them. If
on the other hand w is near 90° or 270°, apogee will be relatively far from the ecliptic, but eclipses can

extend for some distance along the line of nodes on both flanks of the orbit: in that case two moderate
shadow seasons are expected.

In summary, it seems that eclipses are best avoided if i, is moderately large, e.g. 10°. However,
perturbations due to the Moon etc. will cause i, to change with time, and that change must also be

simulated, throughout the mission. Ultimately it may well turn out that the ability to survive long eclipses
(e.g. up to 3 hours or even more) will be one of the requirements of a protracted mission.

4.10 Simulation of Magnetospheric Coverage

4.10.1 The ORBS code

To provide information on the expected coverage and to test the preceding ideas , a Fortran code ORBS
was produced. Its inputs are a launch date and the launch parameters (delay and coasting arc) which
determine the angles

(81, 0,) of (135). Its outputs are statistics of region occupancy, eclipses and other features over the course
of one year, or more accurately, over a time span of 52 weeks (364 days).

The code employs a number of subroutines: ORBEL produces orbital elements corresponding to given
values of (ry,vy), while ORBPT inverts the process and gives r for any given time t (v can also be extracted,
but was not included because it is rarely needed). TRANS4 (a package of several small codes) calculated
rotation matrices between various frames at a given time t, MSREG assigned a region in the
magnetosphere to a given (x,y,z,t) and NSHEET found the value of z in the neutral sheet (or more
generally, on the equatorial surface) corresponding to given (X,y,t). The usual altitude of perigee was 1.1
RE.
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The orbit with minimal i, has the property that its perigee is in the yz plane, while the sidereal time at a
given point is the angle between its meridian and the xz plane. We now use a formula by Meeus [1991, eq.
11.3] for the sidereal time 6, at Greenwich at UT=0 on a given Julian date (i.e. for a Julian time that
ends in 0.5). Launch from Cape Canaveral for a satellite attaining the orbit with smallest i, must be at the
UT corresponding to 0, = 170.5%, because Greenwich lies 80.5° east of Canaveral and the meridian of Cape
Canaveral should be on the yz plane which is 90° east of the xz plane. Introducing (8, 8,) of (135), a delay
of the launch by 8,/15 hours shifts Q2 by §; degrees, while allowing the satellite to coast in its parking orbit
over and angle 8, + 90° shifts w by the same amount. Both the delay and the "coasting arc" are entered
from the keyboard.

The calculation is quite fast, because the orbit is fixed in inertial space and the orbital period is an integral
number of hours, 48 in this case. Thus whenever the position of the multiprobes is examined, any of them
can only occupy one of 48 set positions. As time advances hour by hour, it is only necessary to permute the
satellite positions around the orbit and they never have to be recalculated.

However, the positions of the multiprobes relative to the magnetosphere--even relative to the averaged
magnetosphere--varies constantly, as the angle between the major axis of the orbit orbit and the solar wind
undergoes its annual 360° rotation, while the tail sheet warps and the dipole axis turns with the Earth's own
diurnal rotation. Thus the transformation matrices to the GMS frame must be recalculated every hour. For
every one of those hours, the program collects information about the frequency at which various types of
coverage occur.

Obviously, at each position and for each satellite, subroutine MSREG must assign the satellite to one of
10 regions of the magnetosphere (though the latitude is never high enough for region 9); to assign tail
regions, MSRG in its turn calls NSHEET.

Since it was assumed that no data are collected during eclipses, any satellite in the Earth's shadow is not
included in any other statistics. In the simulation, each satellite, at any time, was assigned a status number
LS, telling how many hours it had spent in eclipse: whenever the satellite was found to be eclipsed, its LS
is increased by 1. If the satellite was not eclipsed, its current value of LS was examined, and if that value
was not zero, the tally of shadows of length LS for that particular week was increased by 1, and LS was
reset to zero.

Statistics were furthermore collected for any hour (out of 168 hours per week) on the number of satellites
simultaneously in the plasma sheet, in the range rin < r < rpax, where radial limits were specified from
the keyboard. Finally, the number of satellites which at any hour were within =1 Rg of the magnetopause
was also recorded.

Such statistics were compiled week by week, as well as for four "seasons" of 13 weeks each and for the
entire "year" of 364 days. The sample orbits listed in Tables ....... were obtained for the "reference orbit"
and for a "good" orbit, both assuming launch on 7.25.1997. The distribution of eclipses of various lengths
occuring for the "reference orbit" outside r=2 Rg is also given here, with superimposed eclipses of the

"good" orbit in parentheses.
4.10.2 The ORB6 code

While the preceding simulation provides a fair view of the coverage of the magnetosphere by "Profile,"
the mission actually planned differs in one important way, namely, it would include two groups of 6
satellites, with slightly different orbits. A simulation code ORB6 was therefore developed from the
preceding one, tracking two groups of satellites, one with period 48 hours and one with a period 46 hours.

All the preceding statistics were again collected, but weekly statistics were also tallied for the following
additional "constellations":
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(1) At times the satellites covered the plasma sheet for rpin <1 <rmax on both legs of the orbit, outbound

from Earth and inbound, giving a somewhat
2-dimensional coverage. ORB6 then recorded the number of weekly hours (out of a total of 168)
during which the two sides of the plasma sheet (neutral sheet + 3 Rg) were covered by (2,2), (2,3+)

or (3+,3+) satellites.

(2) The two-group mission makes possible "superclusters" of 8, 9, 10 or 11+ satellites, all in the region r >
19 Rg, near apogee. The number of weekly hours for each "supercluster" size was recorded, and as
expected, it peaked in a 7-week cycle, corresponding to the time needed for one group to overtake
the other.

The number of superclusters in the plasma sheet (neutral sheet + 3 Rg) was also recorded: these
tended to occur in two of the specific "seasons", 7 weeks apart.

(3) ORBG also tallied the number of hours each week when at least 2 satellites were simultaneously in each
of 4 regions--solar wind, magnetosheath (far from the magnetopause), = 1 Rg of the magnetopause
and the inner magnetosphere. Tally was also kept of the hours when the requirement for the solar
wind was not satisfied (e.g. when the satellites may have been too far from the Sun-Earth line to
reach the bow shock) but with (2+, 2+, 3+) satellites in the other three regions.

Some results are given in table .... . Actual orbits, of course, gradually change their elements due to
external perturbations, but if such changes are known, similar codes can also be written for them.
4.11 Orbital perturbations
4.11.1 The Disturbing Acceleration a

Let subscripts (1,2,3,4) refer to (Earth, satellite, Moon, Sun), and let G be the gravitational constant. Then
equations (8) can be generalized to

d’r, m,
= =G 31y + G (1‘3- r) + G (1‘4- ry) (1452)
dt IS)
d2r2 m;
e Gg(l‘r r) + G7 3(1‘3- r) + G7 3(1‘4- ry) (145b)

The vectors rj are in inertial space, and since all four bodies move, none can provide a fixed point to which
they can be referred. However, one can deal exclusively in differences. Let

r=r,-r; P3= I3—1I] d3=r,-r; = r-p; (146a)
Pg= Iy—1) di=1r-14 = r—pPy (146b)

('r is vector Earth to satellite
piis vector from Earth to ith body,

d; vector from ith body to satellite)
Substracting (145a) from (145b), with u = G(m; + m,) =Gm; = g RE2

d?r w mg 1 my 1 1
w o oreoen LEs sl -uin Lgg dros edl

d:.+
3 P4

o5’
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mjy

| 1
=g [d—33(r—93) +—

¥ ps] (147

m,
p3) ‘Mf

1 1
1 [dT3(l‘—P4) +—=

P4

The perturbation caused by the moon needs no further attention, but that of the Sun does, because it
contains two large terms of opposite signs, almost equal. We have

d?= (r-ps)= ps - Qrps-r7)
= p(1 - [2rps-121/ps?) =p4 (1 -SCP) (148a)

where the scalar product term SCP is <<1. Then
3 (—3

=5
d4_3 =~ p4_3 (1 - SCP)_3/2 i p4_3 [1+ 5 SCP 7 7

+

) scp?] =

N [—

= ps~3 (1 + SCP*(1.5 + 1.875*SCP))

P47 (1 + SCPA) (148b)
The last brackets in (147) thus become

1 1 1
[Ga-p0 +05 pad= o5 [-pa+scray+py] =
~ é [ r(1+SCPA)- p4SCPA] (149)

Hence the perturbing acceleration a, on the right side of eq, (13), is very nearly

mj

_ m3 [L my
a= —uis g3 (r-p3)

1
ps] —Wo 5 [ r(1+SCPA) - p4SCPA] (150)

L L
Py’ P4

where pj3 is the vector from Earth to the moon, p4 is from Earth to the Sun, and d; is the magnitude of

(r-p3). Approximation (149) may also be used for the moon, but seems too inaccurate there. We used the

values

W (Mmoon/Mearth) = 4.8964796 102
(msun/mmoon) = 2.707309 107

4.11.2  Orders of Magnitude

The distance to the moon is about 1/400 AU. The mass of the moon is 1/80 that of the Earth, which is in
turn ~ 10° times smaller than the Sun’s. We assume r is about 1/3 of d3_

Then the order of magnitude of the solar terms compared to the lunar ones is
80 - 10° - (1/3) - (1/400)3 = 80/192 = 0.4

Thus the terms are comparable. The moon’s attraction on the satellite is largest when the satellite is at
apogee and the moon happens to be in the same direction. "Profile" apogee is about 1/3 the moon’s mean
distance, and the distance to the moon is then twice that to Earth, the moon’s mass is 1/80, making the
attraction

(1/80) - (1/4) = 1/320
that of Earth.
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4.11.3 The Non-Spherical Earth

The gravity field of a nonspherical Earth is usually expressed by assuming it is given by a scalar potential
A%
a=-VV (151a)

and that V is given by an expansion in spherical harmonics. The potential V is assumed to be given, and
has been obtained directly from the orbital variations of satellites in low Earth orbit. The biggest effects are
the ones due to the Earth's oblateness, especially the second harmonic term J;.

We neglect the asymmetric terms, which are small and rather troublesome--expressed in geographic
coordinates, they must be transformed to the celestial frame, a time-dependent transformation. The
axisymmetrical terms need not be transformed, since (r,0) are the same in geographic and celestial
coordinates, and they include the dominant J» term. Thus

y - am [1 - 2,0 (R—req )kPk(cose)] (151b)

where the Earth's equatorial radius is Req= 6378.39 km. We have
Py =1 P, = cosd Py= 3(3c0s?0~1)  P;=3(Scos’0 - cosd) (152)

and recursively for any k (v = cos8)

k Pr(v) —= (2k=1)v Pr_(v) + (k=1) Px_(v) = 0 (153a)
From this

k Py - k=1)[v P+ Px] + (k=1)Pyy = 0 (153b)

which allows the derivative P'k to be derived recursively as well, starting from P'y=0, P'; = 1.
We derive VV in mixed coordinates, in terms of spherical r and cylindical z (ultimately, we aim at
cartesian components). For a satellite's motion, Gm = u and we have
cosO = z/r (154)
hence for unit mass
Vo= - u2, i Reqk =K+ Py (z/r) (155)

VV = - 1% r- w2, Reqk[ (—(k+1)r‘(k+3) Py - z r-k+4) P'k) r +r&2pyz ]

(156)
However, an identity exists
Pir = v Pl = (k+1) Py (157)
S0

vV = -r% r+ w2 N Regkr R Pyyzi) e - rPy@ 2 ] (158)
The acceleration due to oblateness is then

a= r% 2, X (Req/r)k [ P - rPy(z/n) 2 ] (159)

Accepted values of the coefficients, in units of 107, are [reference...}

J,=1082.63 J3=-254 J,=-162 Js=-023 Jo=-055 (160)
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4.11.4 Low Precision Formulas for Postions of Sun and Moon

The Astronomical Almanac gives "low precision formulas" for the location of the Sun(p. C-24) and the
Moon (p. D-46). Meeus [1991] has corresponding formulas: the one for the Sun is similar, but the one for
the moon however is much longer and presumably more accurate, Since we use these bodies only to derive
small perturbing terms, the formulas of the almanac were deemed sufficient.

Sun

On Julian date JF, let
n=1JD-2451545.0 (161)

This is equivalent to T in the formulas of Meeus, except that n is in Julian days whereas T is in Julian
centuries (T =n/36525).

Then the mean longitude of the Sun, "corrected for aberration" (which may explain the difference between
the leading terms below)

=
Il

280.461 + 0.985 6474 n (162a)
whereas Meeus gives

=
Il

280.46645 +36000.76983 T + 0.0003032 T>  (162b)

The mean anomaly (of the Earth) in degrees is
g = 357.528 + 0.9856003 n (163a)
whereas Meeus denotes it by M and uses
M = 357.5290 +35999.05030 T - 0.000 1559 T?- 0.000 000 48 T3 (163b)
Ecliptic longitude, in degrees
A =1L +1915sing + 0.020 sin 2g (164a)
while Meeus gives on top of p. 152 as “true longitude”
© = L +(1.914600 - 0.004 817 T - 0.000 014 T?) sin M
+(0.019 993 — 0.000 101 T) sin 2M + 0.000 290 sin 3M (164b)

The ecliptic latitude of the Sun by definition is zero, so the above gives the Sun's position on the celestial
sphere.

Obliquity of the ecliptic, the angle between the Earth's axis and the ze direction perpendicular to the
ecliptic

e = 23.439 -0.000 0004 n (165)
(Meeus has an equivalent formula but in degrees, minutes and seconds, with terms to order T?)
Distance R to the Sun, in astronomical units (AU)

R = 1.000 14 - 0.016 71 cos g — 0.000 14 cos 2g (166)
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Meeus gives
R =1.000 01018 (1 — €?)/1 + e cosv

where v is the true anomaly v = M+ (0 - L). To convert R to meters it is multiplied by 1 AU =
1.49599 10'! meters. The ecliptic coordinates of the Sun are then
(Xe» Ve, Ze) = (R cosA, R sinA, 0) (167)

and the Sun's celestial coordinates

(X, ¥, 2) = (Xe, Ye COSE, ye sing) = (R cosA, R sink cosg, R sink sing) (168)

The declination § is the angle from the celestial equator: thus (90° — 8) is the angle to the celestial z-axis,

and its cosine is (lAl 2 ). It follows that
. A A . .
sind = (R -z )=sinA sing (169)
Right ascension a satisfies tgo = ye/Xe, hence

coSs€ sinA

tga= COSA

= cose tg A (170)

Moon

The position of the moon involves long, empirical formulas. The low precision formulas have 40 terms
and are accurate to 0.3° in ecliptic longitude A, 0.2%in ecliptic latitude B, 0.2 Rg; in distance r. More
accurate but much more complex formulas are given by Meeus and contain around 200 terms.

The almanac formulas use the same parameter T as Meeus:

 JD-2451545.0

36525 (90)

and defines a set of angles, named here arbitrarily and measured in degrees, as follows:

A0 = 21832 +481267.883 T

Al = 1349 + 47719885 T A2 = 2592 - 41333538T
A3 = 2357 + 89053423 T A4 = 2699 + 95439770 T
A5 = 3575 + 3599905 T A6 = 186.6 + 966 404.05T
Bl = 933 + 483202.03 T B2 = 2282 + 960400.87 T
B3 = 3183 + 6003.18 T B4 = 2176 - 40733220T
P1 = Al P2 = A2

P3 = A3 P4 = A4

Then
A=A0 + 629sinAl - 1.27sin A2 + 0.66 sin A3 + 0.21 sin A4

- 0.19sin A5 - 0.11 sin A6

B = 5.13sinB1 + 0.28 sin B2 - 0.28 sin B3 - 0.17 sin B4
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These give the ecliptic coordinates of the moon. to obtain the distance r, one first derives
= 0.9508 + 0.0518 cos P1 +0.0095 cos P2 + 0.0078 cos P3 + 0.0028 cos P4

and then
r = 1l/sinm

. . . . . A
The three geocentric direction cosines (/,m,n) = (¢1, ¢y, ¢3), i.e. the scalar products r-é , rn and r-ﬁ ,
are

¢y = cosp cosA
¢y = 0.9175 cosp sinA — 0.3978 sinf
c3 = 0.3978 cosp sinh + 0.9175 sinp

The celestial coordinates of the moon then are

X=C/T Yy =Cf Z=Csr

4.11.5 Interpolating the positions of the Sun and Moon

The calculation of the Moon's position requires 16 trigonometric functions, that of the Sun's position 6. To
calculate them at each step (and with Runge-Kutta integration, several times in each step) requires
appreciable computer time. The calculation can be accelerated by the simple strategy of calculating
positions ahead of time at a number (e.g. 100) of equally spaced values of the time t, and then interpolate
linearly for any value of t that is given. That is especially important for the Moon, whose position takes
longer to calculate and changes more rapidly than that of the Sun.

A subroutine FILLSUN was coded for this purpose. Given a value At, it derives at the beginning of the
calculation an array of 101 positions of the Sun and Moon, corresponding to elapsed times of 0, At... 100At.
After that, it performs two tasks. First, given time T, it interpolates between appropriate values of time and
obtains the position of the Sun and Moon. And second, if T is within the top 10% of the array's range, it
renumbers its array, moves its last 11 values to the head of its new list, then derives 90 more positions so
that a new array of 101 points is available, overlapping the old one in 10% of its length.

All lunar distances prepared for interpolation are multiplied by a factor FCT slightly larger than unity. The
reason is that if we interpolate linearly between actual positions of the Moon, for all purposes and intents
we are replacing the near-circular lunar orbit by a polygon enclosed inside it. In an enclosed polygon, the
Moon-Earth distance is always smaller than the actual distance, leading to a systematic error. To avoid
such a bias, the dimensions of the polygon are increased by a factor FCT, in such a way that the area
enclosed by it approximately equals the area enclosed by the orbit. Interpolated points then may be outside
the orbit or inside it, but on the average their distance will be close to the actual average distance.

Consider the orbital segment between two points A and B. Instead of interpolating along a chord AB, we
extend the radial distances of A and B by a factor FCT, which moves them to points A' and B', between
which the actual interpolation is made. The factor is defined by the requirement that the area of the triangle
A'OB' is the same as that of the circular segment AOB. The area of the segment is

A =120
and of A'OB'

A, =2 (FCT)? r2 sin(0/2)
Since A|= A,

0 1/2
FeT= (53 )

T (161a
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Expanding
2sin(0/2) =0 - 0324

FCT =~ (1 - 0%24)"12 = 1 +0%48 (161b)

Say the moon's orbit is divided into 60 segments: then 6 = /30, 6%/48 =
0.000 2285 and FCT = 1.0002285. With the same time interval, 6 for the Sun is smaller by a factor 12,
making the term added to unity 144 times smaller or
0.000 00158: for now it will be neglected when dealing with the Sun.

4.12 Encke's Method

Encke’s method is a straightforward perturbation calculation, i.e. we assume the motion is close to a Kepler
ellipse and try to derive the difference. Let

d?r w
ac + s r-a (162)

Given at t=t;, initial parameters r, = r(ty), vo = V(ty), one can construct an unperturbed ("osculating")
Kepler motion with those initial values

d’ros u
de2 + Tos> ros = 0 (163)

Positions and velocities on the osculating orbit at time t will be denoted [ryg(t), Vos(t)]. Let time advance
to t =ty + At. Expanding the actual motion

r(t) = r(ty) + volto) At + 3 2 dtz(to) A2+ .. (164a)

while along the osculating ellipse

t) = t +%t At + 14d t A2+ 164b
ros(t) = ros(to) dt (to) 2 dtz (0) ( )

Subtract (164b) from (164a) and let
d(t) = r(t) - rog(t) (165)

Since the two orbits share initial conditions, the two first right-hand terms are the same in (164a) and
(164b). Subtracting, by (1) and (2)

1 pdr dr 1 1
30 = 5 [pto -3z 1a8=73 a@)ar t2(to) A2 (166)

Encke's method is to derive the time variation of 8, assuming that the motion itself follows the osculating
orbit, along which the perturbing terms are derived. Inaccuracy enters because the values of a used are for
locations slightly off the particle’s actual position, and similarly for other quantities which enter §; but
because all these errors occur in small quantities, the error is of a higher order.

If 8/r becomes too big (> 0.01, one book suggests), the motion must be “rectified.” Using § at the given
point, we obtain ( r,v) there, assume them to be the starting conditions of a new osculating orbit, and start
again with a blank slate, i.e. with & = 0.



2-Body 42

Subtract (2) from (1) at some arbitrary later time

d’d u u
& g TosTp rha
3
u Tos
= @ [ros—r_3 r] ta
u Tos®
= -5 [(0l-—F )r-29] +a (167)
Tos r

This is an ordinary differential equation (ODE), or rather a set of ODEs, determining 8. It also contains
ros(t), a known function, and r(t), not known but expressible as r =8 + rog. One would have thought that
we need eliminate r, but the textbook I used [Battin, 1968] actually eliminates rqg:

Tos =r -0

Tos’ =12+ 80 -2r)

Tos/t?= 1+ 8@ -2 = 1+q

15’/ = (1 +q)*?2 (168)
and from this

l—r1o33=1-(1+q)*? = -f(q) (169)

If q is small (as it should be, since it's of the order of §), then f(q) is also small, since it is the difference of
two nearly identical terms. Multiplying by a suitable factor

f(q) [(1+q)*2+1] = (1+q)* -1 =3q+3q¢*+q* = g3 +3q+ )
hence
_ 3+3q+q2
f(Q) =q 1+ (1+q)3/2 (170)

which is clearly of order q, a function of q which need only be calculated once for all. Equation (167) now
becomes

@ - f(q)r + 98 + 171
@ o f@red) +a (171)
If a new variable is defined wu = dd/dt, this breaks up into six equations (or two vectorial ones) of first
order

@ 172
a " (1722)
du
dt

L fqr+8) +a (172b)
Tos

The independent variable is time t, and ryg depends on it. Let us follow the osculating orbit. Then rqg(t) is
known, and we have a choice: either assume r = rg, or else substitute r =ryg +d ; to lowest order in 0,

both give the same equation, but the second approach also retains some second order terms and will
therefore be the one used here. Then
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d:(d - 2r) 3-(2ros +8) (2rosd) + &
q = 2 = - +98 2 = 2 2 ) (173)
r (rost9) Tos2 + (2rpsd) + &
and (172) becomes
dd
T - (174a)
du

&t = [f@ros+ (14H(@)8] + a (174b)
oS

4.13 Runge-Kutta Integration

The methods used in integrating (174) were all taken from chapter 16 in Numerical Recipes [Press et al.,
1992], a book which combines uncommonly lucid explanations with practical implementation codes. At
first various adaptations of the tried-and-tested Runge-Kutta method were used, and were tested by
checking the long-term behavior of the semimajor axis a., which is not supposed to vary. Since the semi-
major axis is a function of the energy, the constancy of a can be interpreted as the conservation of energy
when all time-dependent perturbations depend on periodically varying parameters. However, it can also be
shown formally.

Runge-Kutta failed that test--not badly, but still, it failed (a similar problem was noted by Mullins and

Evans [1996]). Then the method of Bulirsch and Stoer was tried, and it worked well. Had it failed,, a third
approach, predictor-corrector schemes, could have been tried.

4.13.1 Runge-Kutta
The Runge-Kutta method numerically advances in time the solution a set

%% = F(ty) (175)

The vector y has 6 components, and we assume the first 3 are those of §, the last 3 those of u. One can
formally write

@ =G= 176
a ~ e (176a)
‘ji—‘t‘ — H= H(d) (176b)

The function H(t,d) is the right-hand side of (13b), with q also a function of t and 8.

The essence of Runge-Kutta methods is to advance by small steps At, but design the steps cleverly so as
to minimize error (in a similar sense, Simpson’s rule is more clever than the trapezoidal rule). Perhaps the
simplest member in the family of Runge-Kutta methods is the "Midpoint Method" which is important here
because a slight modification of it, described below, plays a key role in the Bulirsch-Stoer method.

4.13.2 Modified Midpoint Method

Given a system of 1st order equations

i (177)

one can extrapolate it from x to x+2h by a simple Taylor term
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y(x+2h) = y(x) + 2h f(y(x)) + O(h?) (178)

One gets a higher order approximation if instead of adding f at x we add f at the midpoint x+h (functions
without stated arguments are all at the initial point x):

fi(y(x+h)) = fi(y + Ay) =

fi
= fily +hf(y) =fi(y) +hX o i

fi d
= iy +hiy) =y +h T g T
df;
= fily +hf(y) =fiy+h 25
dyi
= fily +hf(y) = fim+hZ 55 (179)

Substitute
dyi
¥i(x) + 2h fi(y(c+h)) = yi (0 + 2h fi(y) + 202 25

dyi 1 &y
=yi(x)+2hd—xl +3 (2h) 22d72‘ (180)

which is correct to order h2.

The modified midpoint method includes two small changes in this scheme, which actually make it less
accurate, but (as will be seen) have their own reward: Start at x, with y(x() and let the step be h. Derive

y(x+2h) to accuracy h? and y(x+h) only to order h (that is one modification):

Yo =Y¥(x) (181a)
y1 =yt hf(y) (order h only)
y2 =y +thf(y)) (order h?)
Then leapfrog
y3 =yt hi(yy) (uses y;,y; midpoint)
V4 = Y2t hf(y3) (uses y,,y4 midpoint)

etc. The last point again is modified. If n+1 is the last division (n segments of size h) then
1 1
yx+nh) =5 (yn + ¥o) 5 f(yn) (181b)
4.13.3 "Classical" Runge-Kutta

Let t — t + At. Then the "classical" RK prescription, accurate to order h*, calls for the following
intermediate vectors kj = (g;, h;), starting with

k; = AtF(ty) = (g, h)) = At(u, H(t,0)) (182)
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Initially, =0, u=0, so k;= (0, aAt). In later steps, if the same osculating orbit is used, the initial values of
(8,u) are not in general zero, and k; is less simple.
The whole scheme (y means y(t)):

k; = At F(t,y)

Kk, = At F(t+At/2, y+Kk,/2)

k; = At F(t+At/2, ytk,/2)

k, = At F(t+At,  y+k3)
and

VA=Y o [kt k200 + k)] (183)
For instance, starting from (&,u) = (0,0), we have (as derived below (16))

ky = (0, a(hAt) = (g, hy) (184a)

At k; At g h
k= AtF(t+ L yt5 ) = AtF(t5 ,8=0+7 ,u=0+7 )

At
= AtF(t+7 ,8=0, u=ﬂg At)

2
t At
= (%l A2, a5 AL = (g, hy) (184b)
At ky At g hy
k3=AtF(tHS ,yt5 ) = AtF(t5 ,8=0+7 ,u=0+5" )

At a(t) 1 At
= AtF(t+7 8= At2, u=7 a(tt5 )At)

- ¢ aed e nes AL a0 = @hy (840

ks = F((t+At), y+k3) = At F(t+At, d=0+g;, u=0+h;)

At At t
At F(t+At, ) =% a(tt> )AL2, u=H((t+> ),%—2 At2)At)

At t 1 At

(H((t+— ),ﬂ-2 A)ALZ, H(t+AL, 5 a(t+—- )Atz)At) (184d)
2 4 2 2

Some of the terms are of order At? or smaller, but that is because this is just the first step after initial values

(0,0). In any case, this sort of substitution is easy for a computer.

The iteration continues along the same osculating orbit, “rectifying” and replacing it with a new one
whenever 0/r exceeds some limit €, say 0.01. When that happens, the last point derived becomes the new
starting point.

4.13.4 Runge-Kutta-Fehlberg

One big problem with the Runge-Kutta methos is the estimation of the actual error. One can conduct the
integration with step 4 and with step 4/2 and compare, but that is rather wasteful, since the result we can
trust is only accurate top order 4.

An different approach was introduced by Fehlberg, who found a 6-step Runge-Kutta procedure whose
terms in one combination integrated the differential equations to an accuracy of order 4’ and in another
gave an accuracy of only order #%. Can these two solutions be meaningfully compared to provide an error
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estimate of the less-accurate one? One may well be suspicious, since both use exactly the same terms, but
in fact it was shown this is a perfectly acceptable way, and it is widely used today.

Numerical Recipes uses a scheme of this typs by Cash and Karp, and also provides the codes. Their codes
in addition use the error estimate to change the step-size % in the course of the calculation, increasing or
reducing it to achieve a certain error range.

Unfortunately, the semi-major axis of the solution slowly changed, suggesting that the method was not
accurate enough. Another Encke code, GRAVE, coded around 1985 by Roger Burrows at Marshall Space
Flight Center, used Runge-Kutta integration, and it was applied by Mullins and Evans [1996] to plan orbits
of the AXAF mission. Its semi-major axis also drifted, but its perigee variations were very close to those
obtained with a non-drifting integration based on the method of Bulirsch and Stoer, as described below.

4.14 The method of Bulirsch and Stoer

The notes below are entirely based on chapters 3,4 and 16 of Numerical Recipes, and anyone interested in
this approach is encouraged to consult that text. Bulirsch-Stoer method resembles Romberg integration and
both rely on polynomial interpolation, described below.

4.14.1 Polynomial Interpolation (or extrapolation)

Given points xa(i),ya(i), i=1,2...n, a unique polynomial P(x) of degree (n-1) exists which passes all the
points (e.g. a straight line for n=2, parabola for n=3 etc.). Polynomial interpolation is the process by which
P(x) is found and its value at a particular x is derived.

A formula due to Laplace gives all the coefficients of P(x), but its expressions are rather long. A easier
way is to generate the coefficients is by recursion, using Neville's algorithm, which builds up P(x)
gradually through polynomials of lower degrees.

A great advantage of the algorithm is that it can work in either of two ways. We can build up the formula
of P(x) through polynomials of lower degree, or we can build up the value of P(x) at a given value of x,
given the values at x of the lower degree polynomials. In the first case we handle formulas, in the 2nd only
numbers. Here are the details:

Given points (X1,y1), (X2,¥2) --- (Xp,yn) one can define as Pjj+y)...(i+m) the polynomial of degree m that fits
the m consecutive points [i,(i+1), ...m].

For instance: P; = y; = const. is a polynomial of degree zero which fits (x;, y;); P»3 is the linear
polynomial fitting (x,,y,) and (x3,y3). The final polynomial P(x) being sought can also be written Py, 5, .

Neville's recursion formula for Pj(j+)...(i+m) involves two polynomials of degree (m-1), one of them
missing (Xj,yj), the other missing (X(i+m),Y(i+m)):

PiGon)...rm)® =

1
N Xi—X(j+m) [(X'X(Hm))Pi(iﬂ)...(i+m—1)(x) + (Xi'x)P(iﬂ)...(ier)(x)]
1
oy Leexmy) @+ (0] (185)

The left-hand polynomial, by its definition on (on the right), is of degree m, and is supposed to give (yj,
Yi+1.--Ym) at all the corresponding values of x.
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Indeed, it does. For values of x other than those at the ends of the range, i.e. Xj+1, ... X(i+m-1) » both a and
b equal the appropriate yy, the terms xa and - xb cancel and we are left with just y. For x=xj, a =yj, and
the term multiplying b is zero. For x=X(j+m) the same happens--a does not matter, b = y(j+m). We can thus
start the recursion with order-zero polynomials P;j = y; and build up.

A faster way is by defining "parent-daughter differences"

Cm,ix) = Pi(i+1)...(i+m)(x) - Pi(i+1)...(i+m—1)(x) (lower parent)
(186)
Dm,ix) = Pi(i+1)...(i+m)(x) - P(i+1)...(i+m)(x) (upper parent)

Then "Numerical Recipes" gives recursions

o _ Xi-xX)(Cmyit1 = Dimyi) Do _ Xitm+1-X)(Cmiit1 ~ Dimsi) (187)
mrL Xj = Xj+m+i mL Xj = Xj+m+1

Using these, one only needs to trace one path from some chosen yj to get to the peak of the pyramid and
obtain P(x).

Subroutine polint (xa,ya,n,z,y,dy) of Numerical Recipes generates the value P(x) at some given x for the
interpolating polynomial of the above array of point, using recursion. The error estimate is dy.

4.14.2 The Trapezoidal Rule

This is a rather simple scheme of numerically evaluating integrals, and is reviewed here only because it
forms the foundation to Romberg integration, which in its turn has some similarities with the Bulirsh-Stoer
method.

In this approximation, an integral s between given limits is estimated from a set of intermediate values,
namely

1

b
s = f fix) dx = h[5 f(a)+f(ath) +fat2h) ..+ f(b-h)+ 5 f(b)] (188)

a

1
2

Subroutine trapzd (func,a,b,s,n) derives this approximation as output variable s, using 21 equally spaced
segments.

Note that by choosing to divide into 2™ segments, whenever one is forced to increase n, nothing is wasted,
for all values of f(x) already calculated can be reused. In what follows such values (e.g. those in (4) above)
will be denoted f, f)... f,. The error here is of order 4.

4.14.3 The Euler.McLaurin summation formula

Numerical Recipes next cites a "deep fact" about the trapezoidal rule, known as the Euler.McLaurin
summation formula. That formula states that not only is the difference between an integral and its
trapezoidal approximation of order /2, but it can also be expanded in an asymptotic series a/l of whose
terms are powers of h?, involving derivatives of odd degree of f(x) at the end points:

j)‘ 1 1 _ Bz_hz ' ' B4_h4 3 3

fx) dx ~h[3 fotfito +5 fo =o' -f) +—g (ad-fid) .

a

szhzk

T gr G = HiCh) - (189)
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The coefficients are the Bernoulli numbers
B0:1 B2:1/6 B4:—1/30 B6 :1/42 Bg:—1/30

generated by
tIl

#1 - 3B, (190)

From Bg the terms grow larger again, without any limit, which is why the series (189) does not actually
converge. But it is asymptotic, i.e. the error generated by truncating it is always less than twice the
magnitude of the first neglected term.

Using the above series for (n) and (2n), one can eliminate the #° term and get an approximation to s which
has only an h? error. The result is, in fact, Simpson's rule.

4.14.4 Romberg Integration

Romberg's method of evaluating integrals is an application of "Richardson's deferred approach to the limit."
Suppose we derive a quantity s by a method involving a small parameter h; Richardon's prescription is to
carry out successive approximations sy, s», ... s, for a series of values hy, h,... hy, fit them to an analytic

function s(h), then extrapolate s(h) to the limit s(0),

Romberg integration does this, using the trapezoidal rule (4)
b

shy = [0 dx = h[3 fa)+ fath)+ f(a+2h) .+ fb-h)+ 3 £(b)]

a
Given approximations s(hg) for hy = (b - a)/Zk, the method fits to s(h) a polynomial of appropriate degree
and extrapolates it to h=0.

There exists a twist, however: by the Euler-McLaurin formula we expect the polynomial to
contain only even powers of y. So properly, the parameter on which s depends is not 4 but /42, or if we
wish, g = Ah?, with some convenient value of the constant 4. We then derive as before values of s}, 55,... 5y,
appropriate to g;, g»... gp, fit the paired values to a polynomial s(g), and as before, the optimal value is then
obtained at g=0. The value of 4 is arbitrary, so we take g; = 1, g,= 1/4 ... gj+; = 0.25 g;.

Subroutine gromb (func,a,b,s) on p. 134 carries this out. It derives the sy for the values of g derived
above (the book denotes them by #4;). Past a certain K = KM (here KM = 4) it also calls subroutine polint to
provide a polynomial approximation Py(g). It then derives the approximation ss;= Pk(0), and the error
estimate dss = ssj+; — ssg. It stops when dss falls below some previously chosen criterion EPS.

4.14.5 The Modified Midpoint Method

The Bulirsch-Stoer integration applies the above approach to the solution of a system of coupled
differential equations. As before, a sophisticated approximation to the solution is obtained, by extrapolating
a series of simple approximations, depending on a small parameter h (or more accurately, on h?) to its limit
ath=0.

The simple approximations in this case (analogous to the trapezoidal rule), is produced by the
modified midpoint method, already described earlier. Given a set of equations

d
=) (191)
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this method advances the solution from x to x+H (H need not be small) in n steps of h = H/n each, by
defining a sequence

2y =y(x)
2, =129 + hi(x,zp)
z, =1z + 2h f(x+h,z;) (192a)

73 = z; + 2h f(x+2h,z,)

and finally
YOHH) = ¥n = 3 [z + 2noy + hf(xHozg)] (192b)

The midpoint method was described earlier, but here the first and last points are modified. A subroutine is
provided to implement this method,

mmid (v,dydx,nvar,xs, htot,nstep,yout,derivs),

with nvar the number of variables, xs the starting value of x, (xs+Afot) the final value (i.e. htot=H), nstep
the number of substeps to be made and yout the output values: one may write y in this position, in which
case the output overwrites the input. Subroutine derivs provides the vector f(x,p).

The reason for the modification is that (as Gragg had shown) the error then (again) depends only on /2 and
can be approximated by a polynomial containing only even powers:

v - y(x+H) = 2 o; h?! (193)

As before, one can combine here approximations of order n and 2n and get one in which no h, term
appears. In this case

¥0cHh) = (420 - ¥n) (194)

As with Romberg integration, this result is related to Simpson's rule.
4.14.6  The Bulirsch-Stoer Method

The Bulirsch-Stoer algorithm is the method of choice for advancing in time differential equations ehich
involve smooth functions, while RK is a better choice for functions with corners or singularities. The
authors also feel it is superior to predictor-corrector methods (described later). It is based on three ideas:

(1) Richardson's deferred approach to the limit, i.e. extrapolation to
h=0.
(2) Rational approximation, i.e. representation as the ratio of two
polynomials, which "breaks the shackles of power series." However, the
authors here have found that for smooth problems
polynomials often work better; this is adopted here, although a
subroutine rzextr is provided for the other way.
(3) The use of expansions whose error depends only on 42, producing a
faster approach to the solution.

The Bulirsch-Stoer method advances the solution of

dy f(x,y) (191)
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by the modified midpoint method over a "macrostep H", divided and redivided into "dozens to hundreds"
of smaller "microsteps" hy, h,...h,. This gives a series of approximations yy, y ... for y(x+H), which is
extrapolated to h= 0, or more accurately to g = Ah? = 0.

The number n; of segments into which the range is divided in the jth step is not doubled each step, but
grows more slowly. Bulirsch and Stoer proposed a modified doubling (nj doubles every two steps)

n=24,6,812,16,24,32 ... nj =2nj_, (195a)

which alternates two doubling sequences, 2,4,8,16,32.. and 6,12,24,48,... Deuflhard (1983, 1985) suggested
instead

n=24,6,810,12,14,16 ... nj =2j (195b)

which is usually more efficient. The big question is choosing the right H: too small is an inefficient use of
a powerful method, too big and the method does not converge. The rule adopted here is to proceed 8 steps,
to n=16, and if the error does not seem to shrink, go to a smaller H,

Numerical Recipes goes into some details of how this choice of H works, and also provides a subroutine
bsstep (y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)

which calls mmid (above) and either pzextr for polynomial extrapolation, or rzextr for rational function
extrapolation. It is configured so that it can replace in subroutine odeint a subroutine rkqs which advances
step by step using the Runge-Kutta method.

As before, nv is the number of variables, Atry is the initial step size, yscal is vector against which
Ay = yerr is scaled (in the DO 16 loop), Adid is the step actually used and snext the estimated next stepsize,
which should become #4#ry of the Bulirsch-Stoer code for the next step.

4.16.7 Multistep (MS), Multivalue (MV) and
Predictor-Corrector (PC)

MS and MV methods are two equivalent ways of implementing a specific technique for solving ODEs. The
"predictor-corrector" (PC) method is the most popular one of this type, so often all such methods are
referred to as "predictor-corrector". They are best for high-precision work with very smooth equations, but
"bookkeeping details are the bane."

In RK or BS, a single step x — x+h or x — x+H is subdivided and advanced. In multistep methods the
combined record of several past points is involved in each advance. Suppose the equations to be solved are

dy

o =) (196)

The solution has reached y;, and must now be advanced to yn+. Formally
Yn+1

yor = yo + J fxy) dx (197)
Yn

and one might approximate it by a Taylor expansion

Yo+1 = ¥n + hf(yn.x) (198)

A better approximation would be
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1
Yn+t1=¥n 3 h [ f(yn+1,%) + f(yn.x)] (199)

where yy on the right-hand side is taken from the approximation (198).
That however is very crude. The general PC method therefore replaces (199) by

Yn+1= ¥n + h[|30fn+1 + ﬁlfn + ﬁan—l + ﬁan—z + ] (200)

To predict yn+; on the right of (18) we extrapolate it from earlier values of y using some polynomial
scheme. A popular scheme is the Adams-Moulton-Bashford method; Adams and Moulton were
astronomers, suggesting this method was widely applied to the integration of orbits, and Danby [1992]
describes such uses in section 10.7. The 3rd order equations have a predictor

h
Yor1= ¥n +75  [23fa- 16 0y + 5 £as] +O(h%) (201a)
and the corrector

h
Yn+1= ¥n + 12 [5 oo +8 1 = fn—l] (201b)

Note that in each case the coefficients add up to 12, just as in (199) they add up to 2, since these are all
improvements on the crude (198). The authors recommend against repeated iteration, which only gives
marginal improvement. Higher orders PC schemes also exist.

4.15 Derivation of the Perturbed Orbit

4.15.1 The ENCKE code

A Fortran code ENCKE was produced to integrate the equations of Encke.s method. The code contained
three sections: input, integration and output.

The input section read the starting conditions, either from a data file or from the keyboard. These
included starting date, the length of the run and starting conditions, presented in one of three ways: (1)
entry time into parking orbit, exit condition from that orbit and velocity at exit, or (2) initial time and
(ro,vg), or (3) initial time and osculating elements. This section also included various preparatory steps, e.g.
the preparation of an initial array of positions of the Moon and the Sun.

The basic output was a file containing all sets of osculating elements derived for the motion, each with the
elapsed time at which it became effective. That information allowed the reconstruction of (r,v) for any time
t covered by the calculation, as soon as the set of elements appropriate for that time was located, which
only required a binary search. For instance, given two such sequences for two satellites initially on the
same orbit but passing perigee one hour apart, these data make it possible to track the changes in their
separation throughout the period covered by them.

The main problem with this output was its size, since typically osculating elements were switched once a
day. A second output, more manageable and short enough to be scanned by eye, was therefore provided on
the standard output file, which also recorded various initial parameters. That output listed time, perigee
distance, semi-major axis, eccentricity, inclinations to the equator and ecliptic, the angles x; and y, etc.
The entries of that list was separated by uneven intervals, always longer than some specified lingth t;, e.g.
30 or 60 days. After a set of output parameters was listed (and this was always done for the initial time
t=0), the code waited a time t,_ after which the wait continued until the next set of osculating elements was
produced, and that set gave the output next on the list.

The integration section was the longest part of the code and was handled entirely by subroutines. The link
between them and ENCKE was through ODEINT (Ordinary Differential Equations INTegration), adapted
from Numerical Recipes. It was written in a way suitable for either the Runge-Kutta subroutine RKQS or
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the Bulirsch-Stoer subroutine BSSTEP, both of which were supplied by the book, as were the subroutines
required by them. Some details of these algorithms and codes are given in Appendix C.

Either method works with the 6 equations (), whose time derivatives depend on the preceding values of
(8, u), the osculating orbit and the time t. The first 3 equations

dd

I (176a)

are trivial, since the preceding u is known explicitely. However, the other three

((ji—ltl a + etc. (176b)

require rogc, the position at time t in the osculating orbit, as well as the perturbing acceleration a, for which
the positions of the Sun and Moon must be provided.

All that is handled by subroutine DERIVS, which is the core of the calculation. It also handles the
derivation of new osculating elements (“rectification” of the variables) whenever it is needed. Both with
Runge-Kutta and Bulirsch-Stoer, DERIVS is called several times in each step (more in Bulirsch-Stoer,
where “macrosteps” are larger), and those intermediate times are obviously not appropriate for testing &
and possibly introducing new elements. The subroutine is however also called once at the beginning of
each step by ODEINT itself, and that is where the test is performed. If 8 is large enough to make the
osculating orbit further away from the true one than what has been allowed, the current values of (3,u) are
added to the osculating (rggc,Vosc) to give the perturbed (r,v), new elements are derived from the new

perturbed values and (§,u) are reset to zero.

Whenever the orbit is thus “rectified” the new elements are passed to ODEINT, which stores them in
arrays later passed to the output. All sorts of small modifications exist here, e.g. rectification was postponed
when it was demanded close to perigee (see further below), and it was enforced automatically if it failed to
occur within a preset time interval after the preceding rectification.

In any numerical calculation, an independent check on the accuracy of the result is always valuable. In
celestial mechanics, in the presence of purely periodic perturbations, the semi-major axis may fluctuate but
its average value should stay fixed. With the Runge-Kutta method, it slowly drifted; the drift rate could be
reduced by forcing smaller steps, but it was always present. After that the Bulirsch-Stoer method was
substituted, and ultimately it passed the test.

At first, however, the codes of Numerical Recipes ran into a problem. For both integration schemes, they
adjusted their step size to meet certain error bounds, using their internal error estimates. Whenever a new
set of osculating elements was introduced, the process started anew, beginning with an extremely small step
size. However, the procedure then did not converge in an orderly way to the appropriate macrostep
(typically 10 hours), possibly because initially the osculating orbit and the real one were extremely close.
“Priming the pump” with steps of 1-10 seconds eliminated the problem.

4.15.2  The periodic variation of the semi-major axis

When the program finally ran, the semi-major axis a seemed stable, but a strange feature was noted. Its
value seemed to fluctuate appreciably, giving the plot of a against time an appreciable thickness, on which
short “hairs” were randomly superimposed. At the same time it was noted that the initial osculating value
of a, at t=0, was abnormally high: it seemed as if @ had slumped during the first few minutes of the orbit
and afterwards varied only randomly, by smaller amounts.

The feature was traced to the oblateness of the Earth and when oblateness terms in a were switched off, it
disappeared. Because motion in the field of the oblate Earth departs from a Kepler ellipse, its osculating
semi-major axis varies periodically around the orbit. Like the attraction of the equatorial bulge, the effect
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peaked near perigee and quickly subsided at greater distances. The peak in a observed at t=0 was thus a
periodic affair, associated with the perigee pass (the orbit was always started at perigee) and not with the
beginning of the calculation. Similar peaks were observed at other perigee passes, but since the main effect
was only noted 20 minutes from perigee, they were rarely encountered by chance at later passes and the
code had to be modified (by forced rectifications near perigee) to make them visible. For this reason, too,
the random fluctuation of @ dropped when rectifications were postponed when ever they were called for
within 2 hours of a perigee pass (which covered about 8% of the orbit).

The periodical variation of a due to the Earth’s bulge also produced a problem when a code ENCKE12
was developed from ENCKE, tracking for one year 12 satellites in the same initial orbit; the 1-year time-
span was chosen. because the outputs were then to be analyzed for magnetospheric coverage, shadows and
the occurence of specific constellations, the way Keplerian orbits were handled at an earlier stage.

It is worth noting that when the perturbation due to the Earth’s oblateness was removed, the semi-major
axis stayed nearly constant even when Runge-Kutta integration was used. Thus this effect may also be
implicated in the problems attending the use of the Runge-Kutta method.

Because the initial orbit was the same, it was expected that all satellites could be started with the same
osculating elements (a, e, i, @, ), but with the mean anoaly / separated by fixed amounts--e.g. separations
of 2at/T radians, with T the orbital period in hours, would cause the satellites to pass perigee one hour apart.
When this was put into practice, however, it turned out that small differences existed then in the orbital
periods, causing the relative positions of satellites to drift, in a few cases even causing satellites to overtake
each other.

This too was caused by the periodic variation of a. In strict Keplerian motion, T is a function of a
(Kepler’s third law) and should therefore be the same for all satellites. Due to the equatorial bulge,
however, osculating a varied systematically around the orbit. Orbits with the same a at perigee and the
same perigee distance then still have the same T, but the actual orbits had different values of a at perigee,
because their initial values of a were specified to be equal at some other points in their orbits, and these
points differed for each satellite.

4.15.3 ENCKEI12A and ORB7

To overcome this problem, a variant code ENCKE12A was produced, specifying as initial condition not
the orbital elements of each satellite, but only those of the “bus” releasing the satellites at consecutive
perigee passes, as well as the value of Av imparted at release. One great advantage of this approach was
that the effects of a “centrifugal slingshot” release were readily incorporated, by assuming the satellites
were released two at a time, with velocity increments +Av. For simplicity, the orbit of the “bus” was
assumed to be purely Keplerian: because all releases were at perigee, where the “bus” orbit originally
began, the injection velocities were unaffected. However, the small difference between the orbital period
of the Keplerian motion and the one with the bulge present were not taken into account. The difference
made b y this is small, because within 5 periods of the “bus” all releases are complete.

In either 12-satellite code ODEINT is called separately to integrate the orbit of each satellite, up to some
final time tg. When the run is complete, ODEINT always provides the final values of (8,u), and adding
these to the final osculating (rogc,Vose) produces the final (r,v). These can then be saved in a separate
output file (together with the time and other details) to serve as starting conditions for the call of ENCKE12
for the next year, either explicitely as written above or implicitely through the starting values of the
osculating elements (a, e, [, i, ®, ), which convey the same information.

ENCKEI12A was intended to be no more than an initializing code, covering a short period (e.g. 2 weeks),
after which all satellites are in orbit, with their simultaneous positions at the end of the period specified.
After that ENCKE12 was called for one year at a time, and its output files served as input to ORB7, a code
resembling ORBS or ORB6, providing statistics of annual coverage of various magnetospheric regions and
of shadows and constellations. ORB?7 differed from earlier codes in that for each hour covered, the actual
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position of each satellite must be calculated, not merely permuted among a small number of pre-calculated
locations. In ORB7 that is accomplished rather quickly, using the tabulated sets of osculating element for
each satellite. In a given hour, those values are usually either the same as the one used the preceding hour,
or those of the next set in the tabulation, so that a long search for the appropriate set is usually not needed.

4.16 The Perturbed Orbit (tentative)

(This section will describe results learned from the application of the codes. Some things have not yet been
tested, and even where results exist, I have run too few orbits and should get a good sample to confirm the
conclusions)

4.16.1 Perigee height

The perigee height of the perturbed orbit changes on two characteristic time scales--a semi-annual
oscillation of typical peak-to-peak amplitude of S00 km and a long-term variation with typical period of 5-9
years, both of these reflecting corresponding oscillations in the orbital eccentricity.

Such behavior was found by Mullins and Evans [1996] who used the Encke code GRAVE for a 50-year
span of a sample AXAF orbit (Figure 3, loc.cit.). They found a growing oscillation in eccentricity and
perigee altitude, apparently ultimately causing the perigee to enter the atmosphere after some decades and
the satellite to decay. The perigee variation was duplicated by ENCKE. It did not however yield the drift of
a shown in the published article, which was probably a spurious effect due to the use of the Runge-Kutta
method. Such long-term behavior (is typical)(is not typical).

Presumably it is desirable to inject the “Profile” bus at the lowest perigee possible, since raising perigee
requires either more fuel or a lighter payload. A good strategy seems to be to choose some initial (w,2)
based on expected (initial) magnetospheric coverage, calculate the orbit for launch at some appropriate time
and then shift the launch date to fit the minimum time of the semi-annual oscillation in perigee height. Such
a shift will make perigee height rise after launch, whereas a launch near the top of the cycle would be
followed by a drop, probably reducing the orbital lifetime.

(the following is just a guess and must be demonstrated!)

On a longer time scale, it helps to locate the minima of the long-term oscillations and launch then.
Because of the synergy between “Profile” and almost any other magnetospheric mission, it is highly
desirable to have the mission last as long as possible. In practice, a lifetime of the order of 10 years is
probably a reasonable goal: in comparison ISEE 1/2, launched with perigee (give value) km, lasted about
8.5 years (check).

Then: Results of tests.
Variability of spacing between satellites.
Variations of i, 1, X2 €tc.
Some sample missions, with coverage figures.



